Equiconvergence theorem for integral operator with involution
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 3, pp. 313-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the integral operator with kernel having discontinuities of the first kind at the lines $t=x$ and $t=1-x$ is studied. The equiconvergence of Fourier expansions for arbitrary integrable function $f(x)$ in eigenfunctions and associated functions of the considered operator and expansions of linear combination of functions $f(x)$ and $f(1-x)$ in trigonometric system is proved. The equiconvergence is studied using the method based on integration of the resolvent using spectral value. Methods, developed by A. P. Khromov in the study of spectral theory of integral operators are widely used. Recently, these methods are of use in studies of boundary value problems of mathematical physics using Fourier method with minimal smoothness conditions for the initial data.
@article{ISU_2017_17_3_a7,
     author = {E. V. Nazarova and V. A. Khalova},
     title = {Equiconvergence theorem for integral operator with involution},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {313--330},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a7/}
}
TY  - JOUR
AU  - E. V. Nazarova
AU  - V. A. Khalova
TI  - Equiconvergence theorem for integral operator with involution
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2017
SP  - 313
EP  - 330
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a7/
LA  - ru
ID  - ISU_2017_17_3_a7
ER  - 
%0 Journal Article
%A E. V. Nazarova
%A V. A. Khalova
%T Equiconvergence theorem for integral operator with involution
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2017
%P 313-330
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a7/
%G ru
%F ISU_2017_17_3_a7
E. V. Nazarova; V. A. Khalova. Equiconvergence theorem for integral operator with involution. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 3, pp. 313-330. http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a7/

[1] Khromov A. P., “Finite-dimensional perturbations of Volterra operators”, Journal of Mathematical Sciences, 138:5 (2006), 5893–6066 | DOI | MR

[2] Khromov A. P., “An equiconvergence theorem for an integral operator with a variable upper limit of integration”, Metric theory of functions and related problems in analysis, Izd-vo Nauchno-Issled. Aktuarno-Finans. Tsentra (AFTs), M., 1999, 255–266 (in Russian)

[3] Nazarova E. V., Equiconvergence theorems for integral operators, Publ. house SVIBKhB, Saratov, 2007, 117 pp. (in Russian)

[4] Khalova V. A., “On analogue of Jordan-Dirichlet theorem about the convergence of the expansions in eigenfunctions of a certain class of differential-difference operators”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 10:3 (2010), 26–32 (in Russian)

[5] Khromov A. P., Lukomskii S. F., Sidorov S. P., Terekhin P. A., New methods of approximation in problems of real analysis and in spectral theory, Saratov Univ. Press, Saratov, 2015, 204 pp. (in Russian)

[6] Khromov A. P., “Mixed problem for the wave equation with arbitrary two-point boundary conditions”, Doklady Math., 91:3 (2015), 294–296 | DOI | DOI | MR | Zbl

[7] Kornev V. V., Khromov A. P., “Equiconvergence of expansions in eigenfunctions of integral operators with kernels that can have discontinuities on the diagonals”, Sb. Math., 192:10 (2001), 1451–1469 | DOI | DOI | MR | Zbl

[8] Naimark M. A., Linear differential operators, Nauka, M., 1969, 526 pp. (in Russian)

[9] Nazarova E. V., Equiconvergence theorems for integral operators with kernels that are discontinuous on diagonals, Dis. Cand. Phys.-Math. of Sci., Saratov, 2003, 115 pp. (in Russian)

[10] Khromov A. P., “Equiconvergence theorems for integrodifferential and integral operators”, Math. USSR-Sb., 42:3 (1982), 331–355 | DOI | Zbl