Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_3_a7, author = {E. V. Nazarova and V. A. Khalova}, title = {Equiconvergence theorem for integral operator with involution}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {313--330}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a7/} }
TY - JOUR AU - E. V. Nazarova AU - V. A. Khalova TI - Equiconvergence theorem for integral operator with involution JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 313 EP - 330 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a7/ LA - ru ID - ISU_2017_17_3_a7 ER -
%0 Journal Article %A E. V. Nazarova %A V. A. Khalova %T Equiconvergence theorem for integral operator with involution %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2017 %P 313-330 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a7/ %G ru %F ISU_2017_17_3_a7
E. V. Nazarova; V. A. Khalova. Equiconvergence theorem for integral operator with involution. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 3, pp. 313-330. http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a7/
[1] Khromov A. P., “Finite-dimensional perturbations of Volterra operators”, Journal of Mathematical Sciences, 138:5 (2006), 5893–6066 | DOI | MR
[2] Khromov A. P., “An equiconvergence theorem for an integral operator with a variable upper limit of integration”, Metric theory of functions and related problems in analysis, Izd-vo Nauchno-Issled. Aktuarno-Finans. Tsentra (AFTs), M., 1999, 255–266 (in Russian)
[3] Nazarova E. V., Equiconvergence theorems for integral operators, Publ. house SVIBKhB, Saratov, 2007, 117 pp. (in Russian)
[4] Khalova V. A., “On analogue of Jordan-Dirichlet theorem about the convergence of the expansions in eigenfunctions of a certain class of differential-difference operators”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 10:3 (2010), 26–32 (in Russian)
[5] Khromov A. P., Lukomskii S. F., Sidorov S. P., Terekhin P. A., New methods of approximation in problems of real analysis and in spectral theory, Saratov Univ. Press, Saratov, 2015, 204 pp. (in Russian)
[6] Khromov A. P., “Mixed problem for the wave equation with arbitrary two-point boundary conditions”, Doklady Math., 91:3 (2015), 294–296 | DOI | DOI | MR | Zbl
[7] Kornev V. V., Khromov A. P., “Equiconvergence of expansions in eigenfunctions of integral operators with kernels that can have discontinuities on the diagonals”, Sb. Math., 192:10 (2001), 1451–1469 | DOI | DOI | MR | Zbl
[8] Naimark M. A., Linear differential operators, Nauka, M., 1969, 526 pp. (in Russian)
[9] Nazarova E. V., Equiconvergence theorems for integral operators with kernels that are discontinuous on diagonals, Dis. Cand. Phys.-Math. of Sci., Saratov, 2003, 115 pp. (in Russian)
[10] Khromov A. P., “Equiconvergence theorems for integrodifferential and integral operators”, Math. USSR-Sb., 42:3 (1982), 331–355 | DOI | Zbl