Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_3_a5, author = {V. A. Klyachin and N. A. Ch{\cyre}ban{\cyre}nko}, title = {On the geometric structure of the continuos mappings preserving the orientation of simplexes}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {294--303}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a5/} }
TY - JOUR AU - V. A. Klyachin AU - N. A. Chеbanеnko TI - On the geometric structure of the continuos mappings preserving the orientation of simplexes JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 294 EP - 303 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a5/ LA - ru ID - ISU_2017_17_3_a5 ER -
%0 Journal Article %A V. A. Klyachin %A N. A. Chеbanеnko %T On the geometric structure of the continuos mappings preserving the orientation of simplexes %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2017 %P 294-303 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a5/ %G ru %F ISU_2017_17_3_a5
V. A. Klyachin; N. A. Chеbanеnko. On the geometric structure of the continuos mappings preserving the orientation of simplexes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 3, pp. 294-303. http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a5/
[1] Natanson I. P., Theory functions of real variable, Nauka, M., 1974, 480 pp. (in Russian)
[2] Lebesgue H., “Sur le probleme de Dirichlet”, Rend. Circ. Palermo, 27 (1907), 371–402 | DOI
[3] Mostow G. D., “Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms”, Publ. Math. de l'lnstitute des Hautes Etudes Scientifiques, 1968, no. 34, 53–104 | DOI | MR | Zbl
[4] Vodop'yanov S. K., “Monotone functions and quasiconformal mappings on Carnot groups”, Siberian Math. J., 37:6 (1996), 1113–1136 | DOI | MR | Zbl
[5] Miklyukov V. M., Introduction in nonsmooth analysis, Volgograd Univ. Press, Volgograd, 2008, 424 pp. (in Russian)
[6] Miklyukov V. M., “Some conditions for the existence of the total differential”, Siberian Math. J., 51:4 (2010), 639–647 | DOI | MR | Zbl
[7] Salimov R. R., “ACL and differentiability of a generalization of quasi-conformal maps”, Izv. Math., 72:5 (2008), 977–984 | DOI | DOI | MR | Zbl
[8] Prokhorova M. F., “Problems of homeomorphism arising in the theory of grid generation”, Proc. Steklov Inst. Math. (Suppl.), 261, suppl. 1 (2008), S165–S182 | MR | Zbl
[9] Boluchevskaya A. V., “On the Quasiisometric Mapping Preserving Simplex Orientation”, Izv. Saratov Univ. (N. S.) Ser. Math. Mech. Inform., 13:1(2) (2013), 20–23 (in Russian)
[10] Klyachin V. A., Chebanenko N. A., “About linear preimages of continuous maps, that preserve orientation of triangles”, Science Journal of VolSU. Mathematics. Physics, 2014, no. 3 (22), 56–60 (in Russian)
[11] Saks S., Integral theory, Izd-vo. inostr. lit., M., 1949, 495 pp. (in Russian)