Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_3_a4, author = {L. Yu. Kabantosva}, title = {Linear difference equation of second order in a {Banach} space and operators splitting}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {285--293}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a4/} }
TY - JOUR AU - L. Yu. Kabantosva TI - Linear difference equation of second order in a Banach space and operators splitting JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 285 EP - 293 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a4/ LA - ru ID - ISU_2017_17_3_a4 ER -
%0 Journal Article %A L. Yu. Kabantosva %T Linear difference equation of second order in a Banach space and operators splitting %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2017 %P 285-293 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a4/ %G ru %F ISU_2017_17_3_a4
L. Yu. Kabantosva. Linear difference equation of second order in a Banach space and operators splitting. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 3, pp. 285-293. http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a4/
[1] Baskakov A. G., Duplishcheva A. Yu., “Difference operators and operator-valued matrices of the second order”, Izv. Math., 79:2 (2015), 217–232 | DOI | DOI | MR | Zbl
[2] Krein M. G., Langer G. K., “Certain mathematical principles of the linear theory of damped vibrations of continua”, Appl. Theory of Functions in Continuum Mechanics (Tbilisi, 1963), v. II, Proc. Intern. Sympos., Fluid and Gas Mechanics, Math. Methods, Nauka, M., 1965, 283–322 (in Russian) | Zbl
[3] Daleckij Ju. L., Krejn M. G., Stability of solutions of differential equations in a Banach space, Nauka, M., 1970, 536 pp. (in Russian)
[4] Krejn S. G., Linear differential equations in Banach space, Nauka, M., 1967, 464 pp. (in Russian)
[5] Henry D., Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin–Heidelberg–New York, 1981, 358 pp. | MR | Zbl
[6] Levitan B. M., Zikov V. V., Almost-periodic functions and differential equations, Moscow Univ. Press, M., 1978, 206 pp. (in Russian)
[7] Baskakov A. G., “Semigroups of difference operators in spectral analysis of linear differential operators”, Functional Analysis and Its Applications, 30:3 (1996), 149–157 | DOI | DOI | MR | Zbl
[8] Baskakov A. G., “Linear differential operators with unbounded operator coefficients and semigroups of bounded operators”, Math. Notes, 59:6 (1996), 586–593 | DOI | DOI | MR | Zbl
[9] Baskakov A. G., “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl
[10] Baskakov A. G., Pastukhov A. I., “Spectral Analysis of a Weighted Shift Operator with Unbounded Operator Coefficients”, Siberian Math. J., 42:6 (2001), 1026–1036 | DOI | MR | Zbl
[11] Baskakov A. G., “Harmonic and spectral analysis of power bounded operators and bounded semigroups of operators on Banach spaces”, Math. Notes, 97:2 (2015), 164–178 | DOI | DOI | MR | Zbl
[12] Dunford N., Schwartz J. T., Linear operators, v. I, Pure Appl. Math., 7, General theory, Interscience Publ., Inc., New York; Interscience Publ., Ltd., London, 1958, 858 pp. | MR | Zbl