On an inner estimate of a convex body by the Lebesgue set of convex differentiable function
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 3, pp. 267-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite-dimentional problem of embedding the largest by the inclusion of lower Lebesgue set of given convex function $f(x)$ in a given convex body $D \subset {\mathbb{R}^p}$ is considered. This problem is the generalization of the problem of inscribed ball (function $f(x)$ is some norm, and the Lebesgue sets are the corresponding balls). The function $f(x)$ must be differentiable on ${\mathbb{R}^p}$ possibly expending the point $0_p$ and $0_p$ is the uniqueness point of minimum. Mathematical formalization of this problem is proposed in the form of finding maximin of a function of the difference of arguments. It is proved that the objective function of this maximin problem is Lipschitzian on all space ${\mathbb{R}^p}$ and quasiconcave on the set $D$. Also, superdifferentiability (in the sense of V. F. Demyanov–A. M. Rubinov) of objective function on the interior of $D$ is established and the corresponding formula of superdifferential is derived. The necessary and sufficient solution conditions and the condition for uniqueness of solution are obtained on the basis of this formula of superdifferential.
@article{ISU_2017_17_3_a2,
     author = {S. I. Dudov and V. V. Abramova},
     title = {On an inner estimate of a convex body by the {Lebesgue} set of convex differentiable function},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {267--275},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a2/}
}
TY  - JOUR
AU  - S. I. Dudov
AU  - V. V. Abramova
TI  - On an inner estimate of a convex body by the Lebesgue set of convex differentiable function
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2017
SP  - 267
EP  - 275
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a2/
LA  - ru
ID  - ISU_2017_17_3_a2
ER  - 
%0 Journal Article
%A S. I. Dudov
%A V. V. Abramova
%T On an inner estimate of a convex body by the Lebesgue set of convex differentiable function
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2017
%P 267-275
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a2/
%G ru
%F ISU_2017_17_3_a2
S. I. Dudov; V. V. Abramova. On an inner estimate of a convex body by the Lebesgue set of convex differentiable function. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 3, pp. 267-275. http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a2/

[1] Dudov S. I., “Inner estimation of a convex set by a norm body”, Comput. Math. Math. Phys., 36:5 (1996), 683–688 | MR | Zbl

[2] Dem'yanov V. F., Malozemov V. N., Introduction to minimax, John Wiley Sons, New York, 1974, 307 pp. | MR

[3] Dem'yanov V. F., Minimax: directional differentiability, Leningrad Univ. Press, Leningrad, 1974, 112 pp. (in Russian)

[4] Fedorov V. V., Computational Methods of Maksimin, Nauka, M., 1979, 280 pp. (in Russian)

[5] Suharev A. G., Fedorov V. V., Minimax Problems and Minimax algorithms, Moscow Univ. Press, M., 1979, 50 pp. (in Russian)

[6] Dudov S. I., “Necessary and Sufficient Conditions for the Maximin of a Function of the Difference of Arguments”, Comput. Math. Math. Phys., 32:12 (1992), 1701–1714 | MR | Zbl

[7] Dem'yanov V. F., Vasil'ev L. V., Non-differentiable optimization, Springer-Verlag, New York, 1985, 452 pp. | MR

[8] Dem'yanov V. F., Rubinov A. M., Foundation of Non-smooth Analysis and Quasidifferential Calculus, Nauka, M., 1990, 432 pp. (in Russian)

[9] Dudov S. I., “Subdifferentiability and Superdifferentiability of Distance Function”, Math. Notes, 61:4 (1997), 440–450 | DOI | DOI | MR | Zbl

[10] Clarke F., Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983, 308 pp. | MR | Zbl

[11] Polovinkin E. S., Set-value Analysis and Differential Inclusion, Fizmatlin, M., 2014, 524 pp. (in Russian)

[12] Vasil'ev F. P., Optimization Methods, v. 2, MCNMO, M., 2011, 434 pp. (in Russian)