Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_3_a0, author = {S. A. Aldashev}, title = {Well-posedness of the {Dirichlet} problem for one class of degenerate multi-dimensional hyperbolic-parabolic equations}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {244--254}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a0/} }
TY - JOUR AU - S. A. Aldashev TI - Well-posedness of the Dirichlet problem for one class of degenerate multi-dimensional hyperbolic-parabolic equations JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 244 EP - 254 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a0/ LA - ru ID - ISU_2017_17_3_a0 ER -
%0 Journal Article %A S. A. Aldashev %T Well-posedness of the Dirichlet problem for one class of degenerate multi-dimensional hyperbolic-parabolic equations %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2017 %P 244-254 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a0/ %G ru %F ISU_2017_17_3_a0
S. A. Aldashev. Well-posedness of the Dirichlet problem for one class of degenerate multi-dimensional hyperbolic-parabolic equations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 3, pp. 244-254. http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a0/
[1] Nakhushev A. M., Problems with Shift for Partial Differential Equations, Nauka, M., 2006, 287 pp. (in Russian)
[2] Vragov V. N., Boundary-Value Problems for Nonclassical Equations of Mathematical Physics, Novosibirsk State Univ. Press, Novosibirsk, 1983, 84 pp. (in Russian)
[3] Karatoprakliev G. D., “Boundary Value Problems for Mixed Type Equations in Multi-dimensional Domains”, Partial Diffential Equations, Banach Center Publications, 10, 1983, 261–269 (in Russian) | Zbl
[4] Aldashev S. A., “Well-posedness of Dirichlet problem for one class of multi-dimensional hyperbolic-parabolic equations”, Ukrainskii Matematicheskii Vestnik, 10:2 (2013), 147–157 (in Russian) | Zbl
[5] Aldashev S. A., “Correctness of the Dirichlet problem for a class of multidimensional hyperbolic-parabolic equations”, J. Math. Sci., 194:5 (2013), 491–498 | DOI | MR | Zbl
[6] Aldashev S. A., “Well-posedness of the Dirichlet and Poincare problems for a multidimensional Gellerstedt equation in a cylindrical domain”, Ukr. Math. J., 64:3 (2012), 484–490 | DOI | MR | Zbl
[7] Aldashev S. A., “Well-posedness of Dirichlet and Poincare problems in a cylindrical domain for degenerate many dimensional hyperbolic equations with Gellerstedt operator”, Nonlinear Oscilations, 18:1 (2015), 10–19 (in Russian)
[8] Mikhlin S. G., Multidimensional singular integrals and integral equations, Pergamon Press, Oxford–New York–Paris, 1965, 255 pp. | MR | Zbl
[9] Kamke E., Manual of ordinary differential equations, Nauka, M., 1965, 703 pp. (in Russian)
[10] Beitmen G., Erdeii A., Higher Transcendental Functions, v. 2, Nauka, M., 1974, 297 pp. (in Russian)
[11] Kolmogorov A., Fomin S., Elements of the Theory of Functions and Functional Analysis, Dover Publ., Mineola, New York, USA, 1999, 288 pp. | MR
[12] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Dover, New York, 1990, 800 pp. | MR
[13] Smirnov V. I., Higher Mathematics Course, pt. 2, v. 4, Nauka, M., 1981, 550 pp. (in Russian)
[14] Fridman A., Partial differential Equations of parabolic type, Mir, M., 1968, 527 pp. (in Russian)
[15] Aldashev S. A., “The Well-Posedness of the Dirichlet Problem for Degenerate Multi-Dimensional Hyperbolic-Parabolic Eguation”, News of the National Academy of Sciences of the Republic of Kazakhstan. Physico-Mathematical Ser., 5:297 (2014), 7–11 (in Russian)