Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_2_a5, author = {M. V. Wilde and N. V. Sergeeva}, title = {Development of asymptotic methods for the analysis of dispersion relations for a viscoelastic solid cylinder}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {183--195}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a5/} }
TY - JOUR AU - M. V. Wilde AU - N. V. Sergeeva TI - Development of asymptotic methods for the analysis of dispersion relations for a viscoelastic solid cylinder JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 183 EP - 195 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a5/ LA - ru ID - ISU_2017_17_2_a5 ER -
%0 Journal Article %A M. V. Wilde %A N. V. Sergeeva %T Development of asymptotic methods for the analysis of dispersion relations for a viscoelastic solid cylinder %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2017 %P 183-195 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a5/ %G ru %F ISU_2017_17_2_a5
M. V. Wilde; N. V. Sergeeva. Development of asymptotic methods for the analysis of dispersion relations for a viscoelastic solid cylinder. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 2, pp. 183-195. http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a5/
[1] Ainola L. J., Nigul U. K., “Stress waves in elastic plates and shells”, Trans. Estonian SSR Acad. Sci., Ser. of Phis.-Math. Tech. Sci., 14:1 (1965), 3–63 (in Russian)
[2] Kaplunov J. D., Kovalev V. A., Wilde M. V., “Matching of asymptotic models in scattering of a plane acoustic waves by an elastic cylindrical shell”, J. Sound and Vibration, 264:3 (2003), 639–655 | DOI | Zbl
[3] Wilde M. V., Kaplunov Yu. D., Kossovich L. Yu., Edge and interfacial resonance phenomena in elastic bodies, Fizmatlit, M., 2010, 280 pp. (in Russian)
[4] Rzhanicin A. R., Creep theory, Stroyizdat, M., 1968, 418 pp. (in Russian)
[5] Rabotnov Yu. N., Creep of structural elements, Nauka, M., 1966, 752 pp. (in Russian)
[6] Chervinko O. P., Senchenkov I. K., “Harmonic waves in a layer and in an infinite cylinder”, Applied Mechanics, 22:12 (1986), 31–37 (in Russian)
[7] Tanaka K., Kon-No A., “Harmonic Waves in Lenear Viscoelastic Plate”, Bull. JSME, 23:176 (1980), 185–193 | DOI | MR
[8] Voropaev G. A., Popkov V. I., “Propagation of axisymmetric waves in a viscoelastic hollow cylinder”, Applied Mechanics, 25:10 (1989), 19–23 (in Russian)
[9] Anofrikova N. S., Sergeeva N. V., “Numerical analysis of dispersion equations for viscoelastic solid cylinder”, Proc. XVII Intern. Conf. “Modern Problems of continuum mechanics”, v. 1, South. Fed. Univ. Press, Rostov-on-Don, 2014, 44–48 (in Russian)
[10] Vatul'yan A. O., Yurlov V. O., “On the dispersion relations for an inhomogeneous waveguide with attenuation”, Mech. Solids, 2016, no. 5, 576–582 | DOI
[11] Anofrikova N. S., Kossovich L. Yu., Chernenko V. P., “Asymptotic methods for constructing solutions in the neighborhood of wave fronts in a viscoelastic rod for large values of time”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 5:1 (2005), 82–88 (in Russian)
[12] Anofrikova N. S., Sergeeva N. V., “Investigation of harmonic waves in the viscoelastic layer”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 14:3 (2014), 321–328 (in Russian) | Zbl
[13] Wilde M. V., Sergeeva N. V., “Asymptotic analysis of the viscoelastic material properties effect on the dispersion of harmonic waves in a solid cylinder”, Proc. XVIII Intern. Conf. “Modern Problems of continuum mechanics”, v. 1, South. Fed. Univ. Press, Rostov-on-Don, 2014, 135–139 (in Russian)
[14] Rabotnov Yu. N., Elements of Hereditary Solid Mechanics, Mir Publ., M., 1980 | MR | Zbl
[15] Man'kovskii V. A., Sapunov V. T., “Nomographic properties of the exponential fractional e-function used for the description of linear viscoelasticity”, Industrial laboratory, 66:3 (2000), 188–191
[16] Badalov F. B., Abdukarimov A., Khudayarov B. A., “A numerical investigation of the influence of rheological parameters on the character of vibrations in heredity-defortable systems”, Computational Technologies, 12:4 (2007), 17–26 (in Russian) | Zbl
[17] Erokhin S. V., “Modelling of creep and relaxation with the use of fractional derivatives”, Internet-Vestnik VolgGASU, 2015, no. 4(40) (in Russian) (accessed 03, March, 2017)
[18] Grinchenko V. T, Meleshko V. V., Harmonic oscillations and waves in elastic bodies, Nauk. Dumka, Kiev, 1981, 284 pp. (in Russian)
[19] Nayfe A. H., Perturbation methods, Mir, M., 1976, 454 pp. (in Russian)
[20] Kozhanova T. V., Kossovich L. Yu., Rayleigh–Lamb dispersion equations, Saratov. Univ. Press, Saratov, 1990, 21 pp. (in Russian)
[21] Lavrentev M. A., Shabat B. V., Methods of the complex variable functions theory, Nauka, M., 1973, 736 pp. (in Russian)
[22] Rabotnov Yu. I., Mechanics of deformable solids, Nauka, M., 1988, 712 pp. (in Russian)
[23] Rossikhin Yu. A., Shitikova M. V., “Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results”, Appl. Mech. Rev., 63:1 (2010), 010801 | DOI
[24] Rossikhin Yu. A., Shitikova M. V., “Comparative analysis of viscoelastic models involving fractional derivatives of different orders”, Fractional Calculus and Applied Analysis, 10:2 (2007), 111–121 | MR | Zbl
[25] Zhuravkov M. A., Romanova N. S., “Review of methods and approaches for mechanical problem solutions based on fractional calculus”, Math. Mech. Solids, 21:5 (2016), 595–620 | DOI | MR