Extended structures on codistributions of contact metric manifolds
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 2, pp. 138-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the notion of an $AP$-manifold is introduced. Such a manifold is an almost contact metric manifold that is locally equivalent to the direct product of a contact metric manifold and an Hermitian manifold. A normal $AP$-manifold with a closed fundamental form is a quasi-Sasakian manifold. A quasi-Sasakian AP-manifold is called in the paper a special quasi-Sasakian manifold ($\mathrm{SQS}$-manifold). A $\mathrm{SQS}$-manifold is locally equivalent to the product of a Sasakian manifold and a Kählerian manifold. As a subsidiary result, a proposition is proved stating that a contact metric space with a zero curvature distribution is a K–contact metric space. The codistribution $D^*$ of a contact metric structure $(M, \vec{\xi}, \eta, \varphi, g, D)$ is defined as the subbundle of the cotangent bundle $T^*M$, consisting of all 1-forms annihilating the structure vector $\vec{\xi}$. On the codistribution $D^*$, the extended almost contact metric structure $(D^*,\vec{u}=\partial_n,\mu=\eta\circ \pi_{*},J,G,\tilde{D})$ is defined. Structural equations are introduced. These equations were used to prove the statement that the extended almost contact metric structure defines a structure of an $AP$-manifold if and only if the Schouten tensor of the contact metric manifold $M$ is equal to zero. Finally we prove the theorem stating that the extended almost contact metric structure is a SQS-structure if and only if the initial manifold is a Sasakian manifold with a zero curvature distribution.
@article{ISU_2017_17_2_a1,
     author = {S. V. Galaev},
     title = {Extended structures on codistributions of contact metric manifolds},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {138--147},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a1/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - Extended structures on codistributions of contact metric manifolds
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2017
SP  - 138
EP  - 147
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a1/
LA  - ru
ID  - ISU_2017_17_2_a1
ER  - 
%0 Journal Article
%A S. V. Galaev
%T Extended structures on codistributions of contact metric manifolds
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2017
%P 138-147
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a1/
%G ru
%F ISU_2017_17_2_a1
S. V. Galaev. Extended structures on codistributions of contact metric manifolds. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 2, pp. 138-147. http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a1/

[1] Salimov A. A., Agca F., “On para-Nordenian structures”, Ann. Polon. Math., 99:2 (2010), 193–200 | DOI | MR | Zbl

[2] Salimov A. A., Agca F., “Some properties of Sasakian metrics in cotangent bundles”, Mediterr. J. Math., 8:2 (2011), 243–255 | DOI | MR | Zbl

[3] Yano K., Ishihara S., Tangent and cotangent bundles, Marcel Dekker, N. Y., 1973, 434 pp. | MR | Zbl

[4] Aso K., “Notes on some properties of the sectional curvature of the tangent bundle”, Yokohama Math. J., 5 (1981), 1–5 | MR | Zbl

[5] Gudmundsson S., Kappos E., “On the geometry of the tangent bundles”, Expo. Math., 20:1 (2002), 1–41 | DOI | MR | Zbl

[6] Kowalski O., “Curvature of the induced Riemannian metric on the tangent bundle of Riemannian manifold”, J. Reine Angew. Math., 250 (1971), 124–129 | MR | Zbl

[7] Musso E., Tricerri F., “Riemannian metric on tangent bundles”, Ann. Math. Pura. Appl., 150:1 (1988), 1–19 | DOI | MR | Zbl

[8] Salimov A. A., Tensor operators and their applications, Nova Science Publ., N. Y., 2013, 692 pp. | MR | Zbl

[9] Sasaki S., “On the Differential geometry of tangent bundles of Riemannian manifols”, Tohoku Math. J., 10:3 (1958), 338–358 | DOI | MR

[10] Bukusheva A. V., Galaev S. V., “Almost contact metric structures defined by connection over distribution with admissible Finslerian metric”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 12:3 (2012), 17–22 (in Russian)

[11] Bukusheva A. V., “Foliation on distribution with Finslerian metric”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 14:3 (2014), 247–251 (in Russian) | Zbl

[12] Bukusheva A. V., Galaev S. V., “Connections on distributions and geodesic sprays”, Russian Math., 57:4 (2013), 7–13 | DOI | MR | Zbl

[13] Galaev S. V., “Geometric interpretation of the Wagner curvature tensor in the case of a manifold with contact metric structure”, Sib. Math. J., 57:3 (2016), 498–504 | DOI | DOI | MR | Zbl

[14] Galaev S. V., “Admissible hypercomplex structures on distributions of Sasakian manifolds”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 16:3 (2016), 263–272 (in Russian) | DOI | Zbl

[15] Bukusheva A. V., “The geometry of the contact metric spaces $\varphi$-connection”, Belgorod State University Scientific Bulletin. Mathematics Physics, 17(214):40 (2015), 20–24 (in Russian)

[16] Galaev S. V., “$N$-extended symplectic connections in almost contact metric spaces”, Russian Math., 2017, no. 3, 15–23

[17] Vagner V. V., “The geometry of an $(n-1)$-dimensional nonholonomic manifold in an $n$-dimensional space”, Proc. of the Seminar on Vector and Tensor Analysis, 5, Moscow Univ. Press, M., 1941, 173–255 (in Russian)

[18] Vagner V. V., “Geometric interpretation of the motion of nonholonomic dynamical systems”, Proc. of the Seminar on Vector and Tensor Analysis, 5, Moscow Univ. Press, M., 1941, 301–327 (in Russian) | Zbl