Extended structures on codistributions of contact metric manifolds
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 2, pp. 138-147

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the notion of an $AP$-manifold is introduced. Such a manifold is an almost contact metric manifold that is locally equivalent to the direct product of a contact metric manifold and an Hermitian manifold. A normal $AP$-manifold with a closed fundamental form is a quasi-Sasakian manifold. A quasi-Sasakian AP-manifold is called in the paper a special quasi-Sasakian manifold ($\mathrm{SQS}$-manifold). A $\mathrm{SQS}$-manifold is locally equivalent to the product of a Sasakian manifold and a Kählerian manifold. As a subsidiary result, a proposition is proved stating that a contact metric space with a zero curvature distribution is a K–contact metric space. The codistribution $D^*$ of a contact metric structure $(M, \vec{\xi}, \eta, \varphi, g, D)$ is defined as the subbundle of the cotangent bundle $T^*M$, consisting of all 1-forms annihilating the structure vector $\vec{\xi}$. On the codistribution $D^*$, the extended almost contact metric structure $(D^*,\vec{u}=\partial_n,\mu=\eta\circ \pi_{*},J,G,\tilde{D})$ is defined. Structural equations are introduced. These equations were used to prove the statement that the extended almost contact metric structure defines a structure of an $AP$-manifold if and only if the Schouten tensor of the contact metric manifold $M$ is equal to zero. Finally we prove the theorem stating that the extended almost contact metric structure is a SQS-structure if and only if the initial manifold is a Sasakian manifold with a zero curvature distribution.
@article{ISU_2017_17_2_a1,
     author = {S. V. Galaev},
     title = {Extended structures on codistributions of contact metric manifolds},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {138--147},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a1/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - Extended structures on codistributions of contact metric manifolds
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2017
SP  - 138
EP  - 147
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a1/
LA  - ru
ID  - ISU_2017_17_2_a1
ER  - 
%0 Journal Article
%A S. V. Galaev
%T Extended structures on codistributions of contact metric manifolds
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2017
%P 138-147
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a1/
%G ru
%F ISU_2017_17_2_a1
S. V. Galaev. Extended structures on codistributions of contact metric manifolds. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 2, pp. 138-147. http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a1/