Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_2_a1, author = {S. V. Galaev}, title = {Extended structures on codistributions of contact metric manifolds}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {138--147}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a1/} }
TY - JOUR AU - S. V. Galaev TI - Extended structures on codistributions of contact metric manifolds JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 138 EP - 147 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a1/ LA - ru ID - ISU_2017_17_2_a1 ER -
S. V. Galaev. Extended structures on codistributions of contact metric manifolds. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 2, pp. 138-147. http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a1/
[1] Salimov A. A., Agca F., “On para-Nordenian structures”, Ann. Polon. Math., 99:2 (2010), 193–200 | DOI | MR | Zbl
[2] Salimov A. A., Agca F., “Some properties of Sasakian metrics in cotangent bundles”, Mediterr. J. Math., 8:2 (2011), 243–255 | DOI | MR | Zbl
[3] Yano K., Ishihara S., Tangent and cotangent bundles, Marcel Dekker, N. Y., 1973, 434 pp. | MR | Zbl
[4] Aso K., “Notes on some properties of the sectional curvature of the tangent bundle”, Yokohama Math. J., 5 (1981), 1–5 | MR | Zbl
[5] Gudmundsson S., Kappos E., “On the geometry of the tangent bundles”, Expo. Math., 20:1 (2002), 1–41 | DOI | MR | Zbl
[6] Kowalski O., “Curvature of the induced Riemannian metric on the tangent bundle of Riemannian manifold”, J. Reine Angew. Math., 250 (1971), 124–129 | MR | Zbl
[7] Musso E., Tricerri F., “Riemannian metric on tangent bundles”, Ann. Math. Pura. Appl., 150:1 (1988), 1–19 | DOI | MR | Zbl
[8] Salimov A. A., Tensor operators and their applications, Nova Science Publ., N. Y., 2013, 692 pp. | MR | Zbl
[9] Sasaki S., “On the Differential geometry of tangent bundles of Riemannian manifols”, Tohoku Math. J., 10:3 (1958), 338–358 | DOI | MR
[10] Bukusheva A. V., Galaev S. V., “Almost contact metric structures defined by connection over distribution with admissible Finslerian metric”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 12:3 (2012), 17–22 (in Russian)
[11] Bukusheva A. V., “Foliation on distribution with Finslerian metric”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 14:3 (2014), 247–251 (in Russian) | Zbl
[12] Bukusheva A. V., Galaev S. V., “Connections on distributions and geodesic sprays”, Russian Math., 57:4 (2013), 7–13 | DOI | MR | Zbl
[13] Galaev S. V., “Geometric interpretation of the Wagner curvature tensor in the case of a manifold with contact metric structure”, Sib. Math. J., 57:3 (2016), 498–504 | DOI | DOI | MR | Zbl
[14] Galaev S. V., “Admissible hypercomplex structures on distributions of Sasakian manifolds”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 16:3 (2016), 263–272 (in Russian) | DOI | Zbl
[15] Bukusheva A. V., “The geometry of the contact metric spaces $\varphi$-connection”, Belgorod State University Scientific Bulletin. Mathematics Physics, 17(214):40 (2015), 20–24 (in Russian)
[16] Galaev S. V., “$N$-extended symplectic connections in almost contact metric spaces”, Russian Math., 2017, no. 3, 15–23
[17] Vagner V. V., “The geometry of an $(n-1)$-dimensional nonholonomic manifold in an $n$-dimensional space”, Proc. of the Seminar on Vector and Tensor Analysis, 5, Moscow Univ. Press, M., 1941, 173–255 (in Russian)
[18] Vagner V. V., “Geometric interpretation of the motion of nonholonomic dynamical systems”, Proc. of the Seminar on Vector and Tensor Analysis, 5, Moscow Univ. Press, M., 1941, 301–327 (in Russian) | Zbl