To Chang theorem. II
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 2, pp. 127-137

Voir la notice de l'article provenant de la source Math-Net.Ru

Multilinear polynomials $\mathcal{ H}^+(\bar x, \bar y \vert \bar w)$, $\mathcal{ H}^-(\bar x, \bar y \vert \bar w)\in F\{X\cup Y\}$, the sum of which is a polynomial $\mathcal{ H}(\bar x, \bar y \vert \bar w)$ Chang (where $F\{X\cup Y\}$ is a free associative algebra over an arbitrary field $F$ of characteristic not equal two, generated by a countable set $X\cup Y$) have been introduced in this paper. It has been proved that each of them is a consequence of the standard polynomial $S^-(\bar x)$. In particular it has been shown that the Capelli quasi-polynomials $b_{2m-1}(\bar x_m, \bar y)$ and $h_{2m-1}(\bar x_m, \bar y)$ are also consequences of the polynomial $S^-_m(\bar x)$. The minimal degree of the polynomials $b_{2m-1}(\bar x_m, \bar y)$, $h_{2m-1}(\bar x_m, \bar y)$ in which they are a polynomial identity of matrix algebra $M_n(F)$ has been also found in the paper. The obtained results are the translation of Chang results to some Capelli quasi-polynomials of odd degree.
@article{ISU_2017_17_2_a0,
     author = {S. Yu. Antonov and A. V. Antonova},
     title = {To {Chang} theorem. {II}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {127--137},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a0/}
}
TY  - JOUR
AU  - S. Yu. Antonov
AU  - A. V. Antonova
TI  - To Chang theorem. II
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2017
SP  - 127
EP  - 137
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a0/
LA  - ru
ID  - ISU_2017_17_2_a0
ER  - 
%0 Journal Article
%A S. Yu. Antonov
%A A. V. Antonova
%T To Chang theorem. II
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2017
%P 127-137
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a0/
%G ru
%F ISU_2017_17_2_a0
S. Yu. Antonov; A. V. Antonova. To Chang theorem. II. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 2, pp. 127-137. http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a0/