Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_1_a7, author = {M. V. Karandashov}, title = {The algorithm for checking transitivity of mappings associated with the finite state machines from the groups~$AS_p$}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {85--95}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a7/} }
TY - JOUR AU - M. V. Karandashov TI - The algorithm for checking transitivity of mappings associated with the finite state machines from the groups~$AS_p$ JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 85 EP - 95 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a7/ LA - ru ID - ISU_2017_17_1_a7 ER -
%0 Journal Article %A M. V. Karandashov %T The algorithm for checking transitivity of mappings associated with the finite state machines from the groups~$AS_p$ %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2017 %P 85-95 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a7/ %G ru %F ISU_2017_17_1_a7
M. V. Karandashov. The algorithm for checking transitivity of mappings associated with the finite state machines from the groups~$AS_p$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 1, pp. 85-95. http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a7/
[1] Grigorchuk R. I., Nekrashevych V. V., Sushchanskii V. I., “Automata, Dynamical Systems and Groups”, Proc. Steklov Inst. Math., 231, 2000, 134–214 (in Russian) | Zbl
[2] Tyapaev L. B., “Transitive family automaton mappings”, Computer Science and Information Technologies, Proc. Intern. Sci. Conf., Publ. center “Nauka”, Saratov, 2015, 244–247 (in Russian)
[3] Tyapaev L. B., “Transitive families and measure-preservind an N-unit delay mappings”, Computer Science and Information Technologies, Proc. Intern. Sci. Conf., Publ. Center “Nauka”, Saratov, 2016, 425–429 (in Russian)
[4] Gill A., Introduction to the theory of finite-state machines, McGraw-Hill Book Co., Inc., New York–Toronto–Ontario–London, 1962, 207 pp. | MR | MR
[5] Karandashov M. V., “Research bijective automaton mappings on the ring of residues modulo $2^k$”, Computer Science and Information Technologies, Proc. Intern. Sci. Conf., Publ. Center “Nauka”, Saratov, 2014, 148–152 (in Russian)
[6] Yablonsky S. V., Introduction to Discrete Mathematics, Textbook. manual for schools, Nauka, M., 1986, 384 pp. (in Russian) | MR
[7] Kaluzhin L. A., Sushchanskii V. I., Transformations and permutations, Trans. RBM, Nauka, M., 1985, 160 pp. (in Russian)
[8] Aleshin S. V., “Finite automata and Burnside's problem for periodic groups”, Math. Notes, 11:3 (1972), 199–203 | DOI | MR | Zbl | Zbl