Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_1_a4, author = {V. A. Yurko}, title = {On recovering differential pencils on a bush-type graph}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {51--61}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a4/} }
TY - JOUR AU - V. A. Yurko TI - On recovering differential pencils on a bush-type graph JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 51 EP - 61 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a4/ LA - ru ID - ISU_2017_17_1_a4 ER -
V. A. Yurko. On recovering differential pencils on a bush-type graph. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 1, pp. 51-61. http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a4/
[1] Yurko V. A., Method of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002, 316 pp. | MR
[2] Marchenko V. A., Sturm–Liouville Operators and Applications, Birkhäuser Verlag, Basel, Switzerland, 1986, 393 pp. | MR | Zbl
[3] Levitan B. M., Inverse Sturm–Liouville problems, VNU Science Press, Utrecht, 1987, 246 pp. | MR | Zbl
[4] Freiling G., Yurko V. A., Inverse Sturm–Liouville Problems and their Applications, Nova Science Publ., N.Y., 2001, 305 pp. | MR | Zbl
[5] Beals R., Deift P., Tomei C., Direct and Inverse Scattering on the Line, Math. Surveys and Monographs, 28, Amer. Math. Soc., Providence, RI, 1988, 209 pp. | DOI | MR | Zbl
[6] Belishev M. I., “Boundary spectral Inverse Problem on a class of graphs (trees) by the BC method”, Inverse Problems, 20:3 (2004), 647–672 | DOI | MR | Zbl
[7] Yurko V. A., “Inverse spectral problems for Sturm–Liouville operators on graphs”, Inverse Problems, 21:3 (2005), 1075–1086 | DOI | MR | Zbl
[8] Brown B. M., Weikard R., “A Borg–Levinson theorem for trees”, Proc. Royal Soc. Ser. A: Math. Phys. Eng. Sci., 461:2062 (2005), 3231–3243 | DOI | MR | Zbl
[9] Yang C.-Fu, Yang X.-P., “Uniqueness theorems from partial information of the potential on a graph”, J. Inverse and Ill-Posed Problems, 19:4–5 (2011), 631–639 | DOI | MR
[10] Bondarenko N. P., “Inverse problems for the differential operator on the graph with a cycle with different orders on different edges”, Tamkang J. Math., 46:3 (2015), 229–243 | DOI | MR | Zbl
[11] Ignatyev M. Yu., Freiling G., “Spectral analysis for the Sturm–Liouville operator on sun-type graphs”, Inverse Problems, 27:9 (2011), 095003, 17 pp. | DOI | MR | Zbl
[12] Ignatyev M. Yu., “Inverse scattering problem for Sturm–Liouville operator on one-vertex noncompact graph with a cycle”, Tamkang J. Math., 42:3 (2011), 365–384 | DOI | MR
[13] Buterin S. A., Freiling G., “Inverse spectral-scattering problem for the Sturm–Liouville operator on a noncompact star-type graph”, Tamkang J. Math., 44:3 (2013), 327–349 | DOI | MR | Zbl
[14] Yurko V. A., “Inverse problems for non-selfadjoint quasi-periodic differential pencils”, Anal. Math. Phys., 2:3 (2012), 215–230 | DOI | MR | Zbl
[15] Marchenko V. A., Ostrovskii I. V., “A characterization of the spectrum of the Hill operator”, Math. USSR-Sb., 26:4 (1975), 493–554 | DOI | Zbl