Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_1_a2, author = {A. O. Petrikov}, title = {A minimal non-extendable partial semigroup}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {31--39}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a2/} }
A. O. Petrikov. A minimal non-extendable partial semigroup. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 1, pp. 31-39. http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a2/
[1] Lyapin E. S., “The possibility of semigroup continuation of a partial groupoid”, Soviet Math. (Iz. VUZ), 33:12 (1989), 82–85 | MR | Zbl
[2] Lyapin E. S., “Inner semigroup continuation of some semigroup amalgams”, Soviet Math. (Iz. VUZ), 37:11 (1993), 18–24 | MR | Zbl
[3] Goralcik P., Koubek V., “On completing partial groupoids to semigroups”, Intern. J. Algebra Comput., 16:3 (2006), 551–562 | DOI | MR | Zbl
[4] Petrikov A. O., “Partial Semigroups and Green's Relations”, Electronic Information Systems, 2014, no. 3(3), 65–72 (in Russian)
[5] Rozen V. V., Partial operations in ordered sets, Saratov Univ. Press, Saratov, 1973, 123 pp. (in Russian)
[6] Kurosh A. G., Lectures on general algebra, Nauka, M., 1973, 400 pp. (in Russian)
[7] Clifford A., Preston G., The algebraic theory of semigroups, v. 1, American Mathematical Society, Providence, R.I., 1964, 224 pp.
[8] Lyapin E. S., Evseev A. E., Partial algebaic operations, Obrazovanie, S. Petersburg, 1991, 163 pp. (in Russian)
[9] Cayley A., “On the Theory of Groups”, American Journal of Mathematics, 11:2 (1889), 139–157 | DOI | MR
[10] The GAP Group, (data obrascheniya: accessed 14 August 2016) http://www.gap-system.org