Dini--Lipschitz test on the generalized Haar systems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 435-448.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized Haar systems, which are generated (generally speaking, unbounded) by a sequence $ \{p_n\}_{n=1}^\infty $ and which is defined on the modification segment $ [0, 1]^* $, thai is on a segment $[0, 1]$, where $ \{ p_n \}$ — rational points are calculated two times and which is a geometrical representation of zero-dimensional compact Abelians group are considering in this work. The main result of this work is a setting of the pointwise estimation between of an absolute value of difference between continuous in the given point function and it's $n$-s particular Fourier sums and “pointwise” module of continuity of this function (this notion (“pointwise” module of continuity $\omega_n (x, f)$) is also defined in this work). Based on this a uniform estimation between an absolute value of difference between a continious on the $ [0, 1]^* $ function and it's particular Fourier Sums and the module of continuity of this function is established. A sufficient condition of the pointwise and uniformly boundedness of particular Fourier Sums by generalized Haar's systems for the given continuous function is established too. Based on this estimation we establish a test of convergence of Fourier Series with respect to generalized Haar's systems analogous Dini–Lipschitz test. The unimprovement of the test, which is obtained in this work, is showed too. For any $ \{ p_n \}_{n=1}^\infty $ with $ \sup\limits_n p_n = \infty $ a model of the continuous on $ [0, 1]^* $ function, which Fourier Series by generalized Haar's system, which generated by sequence $ \{ p_n \}_{n=1}^\infty $ boundly diverges in some fixed point, is constructed. This result may be applied to the zero-dimentions compact Abelian groups.
@article{ISU_2016_16_4_a8,
     author = {V. I. Shcherbakov},
     title = {Dini--Lipschitz test on the generalized {Haar} systems},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {435--448},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a8/}
}
TY  - JOUR
AU  - V. I. Shcherbakov
TI  - Dini--Lipschitz test on the generalized Haar systems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 435
EP  - 448
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a8/
LA  - ru
ID  - ISU_2016_16_4_a8
ER  - 
%0 Journal Article
%A V. I. Shcherbakov
%T Dini--Lipschitz test on the generalized Haar systems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 435-448
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a8/
%G ru
%F ISU_2016_16_4_a8
V. I. Shcherbakov. Dini--Lipschitz test on the generalized Haar systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 435-448. http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a8/

[1] Vilenkin N. Ya., “On a class of complete orthonormal systems”, Izv. Akad. Nauk SSSR. Ser. Mat., 11:4 (1947), 363–400 (in Russian) | MR | Zbl

[2] Agaev G. N., Vilenkin N. Ya., Dzafarli G. M., Rubinstein A. I., Multiplicative Systems of Functions and Harmonic Analysis on Zero-dimensional Groups, ELM, Baku, 1981, 180 pp. (in Russian)

[3] Monna A. F., Analyse Non-Archimédienne, Springer-Veilag, Berlin–Heidelberg–N.Y., 1970, 118 pp. | MR | Zbl

[4] Khrennikov A. Y., Shelkovich V. M., The Moderne $p$-additional Analysis and Mathematical Phisics. Theory and Applications, Fizmatgiz, M., 2012, 452 pp. (in Russian)

[5] Shcherbakov V. I., “Divergence of the Fourier series by generalized Haar systems at points of continuity of a function”, Russian Math. (Iz. VUZ), 60:1 (2016), 42–59 | DOI | MR | MR | Zbl

[6] Shcherbakov V. I., “About Pointwise convergence of the Fourier Series with Respect to Multiplicative Systems”, Vestn. MSU, Ser. Math., Mech., 1983, no. 2, 37–42 (in Russian)

[7] Onneweer C. W., Waterman D., “Uniform convergence of Fourier Series on groups”, Michigan Math. J., 18:3 (1971), 265–273 | DOI | MR | Zbl

[8] Shcherbakov V. I., “Dini–Lipschitz Test and Convergence of Fourier Series which Respect to Multiplicative Systems”, Analysis Math., 10:1 (1984), 133–150 (in Russian) | DOI | MR | Zbl

[9] Golubov B. I., “About One Class of the Complete Orthogonal Systems”, Sib. Math. J., IX:2 (1968), 297–314 (in Russian) | Zbl

[10] Golubov B. I., Rubinshtein A. I., “A class of convergence systems”, Mat. Sb. (N.S.), 71:1 (1966), 96–115 (in Russian) | MR | Zbl

[11] Lukomskii S. F., “Haar series on compact zero-dimensional abelian group”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 9:1 (2009), 24–29 (in Russian) | MR | Zbl

[12] Price J. J., “Certain groups of orthogonal step functions”, Canadian J. Math., 9:3 (1957), 417–425 | MR

[13] Chrestenson H. E., “A class of generalized Walsh's functions”, Pacific J. Math., 5:1 (1955), 17–31 | DOI | MR | Zbl

[14] Walsh J. L., “A constructive of normal orthogonal functions”, Amer. J. Math., 49:1 (1923), 5–24 | DOI | MR

[15] Paley R. E. A. C., “A remarkable series of orthogonal functions”, Proc. London Math. Soc., 36 (1932), 241–264 | DOI | MR

[16] Rademacher H., “Enige Sätze über Reihen von allgemeinen Orthogonalfunctionen”, Math. Ann., 87:1–2 (1922), 112–130 | DOI | MR

[17] Haar A., “Zur Theorie der Orthogonalischen Functionsysteme”, Math. Ann., 69 (1910), 331–371 | DOI | MR | Zbl

[18] Komissarova N. E., “Lebesgue functions for Haar system on compact zero-dimensional group”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 12:3 (2012), 30–36 (in Russian) | Zbl

[19] Shcherbakov V. I., “Dini–Lipschitz Test on the Generalized Haar's Systems”, Contemporary Problems of Function Theory and Their Applications, Proc. 17th Intern. Saratov Winter School, Nauchnaya kniga, Saratov, 2014, 307–308 (in Russian)