Three-dimensional homogeneous spaces, not admitting invariant connections
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 413-421.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the work is the classification of three-dimensional isotropy-faithful homogeneous spaces, not admitting invariant connections. The local classification of homogeneous spaces is equivalent to the description of effective pairs of Lie algebras. If there exists at least one invariant connection then the space is isotropy-faithful, but the isotropy-faithfulness is not sufficient for the space in order to have invariant connections. The peculiarity of techniques presented in the work is the application of purely algebraic approach, the compound of different methods of differential geometry, theory of Lie groups, Lie algebras and homogeneous spaces.
@article{ISU_2016_16_4_a5,
     author = {N. P. Mozhey},
     title = {Three-dimensional homogeneous spaces, not admitting invariant connections},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {413--421},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a5/}
}
TY  - JOUR
AU  - N. P. Mozhey
TI  - Three-dimensional homogeneous spaces, not admitting invariant connections
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 413
EP  - 421
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a5/
LA  - ru
ID  - ISU_2016_16_4_a5
ER  - 
%0 Journal Article
%A N. P. Mozhey
%T Three-dimensional homogeneous spaces, not admitting invariant connections
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 413-421
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a5/
%G ru
%F ISU_2016_16_4_a5
N. P. Mozhey. Three-dimensional homogeneous spaces, not admitting invariant connections. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 413-421. http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a5/

[1] Rashevskii P. K., Riemannian geometry and tensor analysis, Nauka, M., 1967, 664 pp. (in Russian)

[2] Nomizu K., “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76:1 (1954), 33–65 | DOI | MR | Zbl

[3] Mozhey N. P., Three-dimensional isotropy-faithful homogeneous spaces and connections on them, Kazan' Univ. Press, Kazan', 2015, 394 pp. (in Russian)

[4] Kobayashi S., Nomizu K., Foundations of differential geometry, v. 1, John Wiley and Sons, N. Y., 1963, 340 pp. ; v. 2, 1969, 485 pp. | Zbl

[5] Mozhey N., “Invariant affine connections on three-dimensional homogeneous spaces with nonsolvable transformation group”, Lobachevskii J. Math., 35:3 (2014), 218–240 | DOI | MR | Zbl

[6] Komrakov B., Tchourioumov A., Doubrov B., Two-dimensional homogeneous spaces, Preprint series: Pure mathematics, No 17, 1993, 142 pp. (data obrascheniya: 15.11.2015) http://urn.nb.no/URN:NBN:no-47681