Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_4_a4, author = {V. V. Kornev and A. P. Khromov}, title = {Resolvent approach to {Fourier} method in a mixed problem for non-homogeneous wave equation}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {403--413}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a4/} }
TY - JOUR AU - V. V. Kornev AU - A. P. Khromov TI - Resolvent approach to Fourier method in a mixed problem for non-homogeneous wave equation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 403 EP - 413 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a4/ LA - ru ID - ISU_2016_16_4_a4 ER -
%0 Journal Article %A V. V. Kornev %A A. P. Khromov %T Resolvent approach to Fourier method in a mixed problem for non-homogeneous wave equation %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 403-413 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a4/ %G ru %F ISU_2016_16_4_a4
V. V. Kornev; A. P. Khromov. Resolvent approach to Fourier method in a mixed problem for non-homogeneous wave equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 403-413. http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a4/
[1] Burlutskaya M. Sh., Khromov A. P., “Resolvent approach in the Fourier method”, Dokl. Math., 90:2 (2014), 545–548 | DOI | DOI | MR | Zbl
[2] Burlutskaya M. Sh., Khromov A. P., “The resolvent approach for the wave equation”, Comput. Math. Math. Phys., 55:2 (2015), 227–239 | DOI | DOI | MR | Zbl
[3] Kornev V. V., Khromov A. P., “Resolvent approach to the Fourier method in a mixed problem for the wave equation”, Comput. Math. Math. Phys., 55:4 (2015), 618–627 | DOI | DOI | MR | Zbl
[4] Kornev V. V., Khromov A. P., “A resolvent approach in the Fourier method for the wave equation: the non-selfadjoint case”, Comput. Math. Math. Phys., 55:7 (2015), 1138–1149 | DOI | DOI | MR | Zbl
[5] Petrovskii I. G., Lectures on Partial Differential Equations, Fizmatgiz, M., 1961, 400 pp. (in Russian)
[6] Chernyatin V. A., Justification of the Fourier method in a mixed problem for partial differential equations, Moscow Univ. Press, M., 1991, 112 pp. (in Russian)
[7] Rasulov M. L., The method of the contour integral, Nauka, M., 1964, 462 pp. (in Russian)
[8] Vagabov A. I., Introduction to the spectral theory of differential operators, Rostov Univ. Press, Rostov-on-Don, 1994, 106 pp. (in Russian)