Resolvent approach to Fourier method in a mixed problem for non-homogeneous wave equation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 403-413.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fourier method of obtaining classic solution is being justified in a mixed problem for non-homogeneous wave equation with a complex potential and fixed boundary conditions under minimal conditions on initial data. The proof is based on resolvent approach which does not need any information on eigen and associated functions of the corresponding spectral problem.
@article{ISU_2016_16_4_a4,
     author = {V. V. Kornev and A. P. Khromov},
     title = {Resolvent approach to {Fourier} method in a mixed problem for non-homogeneous wave equation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {403--413},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a4/}
}
TY  - JOUR
AU  - V. V. Kornev
AU  - A. P. Khromov
TI  - Resolvent approach to Fourier method in a mixed problem for non-homogeneous wave equation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 403
EP  - 413
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a4/
LA  - ru
ID  - ISU_2016_16_4_a4
ER  - 
%0 Journal Article
%A V. V. Kornev
%A A. P. Khromov
%T Resolvent approach to Fourier method in a mixed problem for non-homogeneous wave equation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 403-413
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a4/
%G ru
%F ISU_2016_16_4_a4
V. V. Kornev; A. P. Khromov. Resolvent approach to Fourier method in a mixed problem for non-homogeneous wave equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 403-413. http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a4/

[1] Burlutskaya M. Sh., Khromov A. P., “Resolvent approach in the Fourier method”, Dokl. Math., 90:2 (2014), 545–548 | DOI | DOI | MR | Zbl

[2] Burlutskaya M. Sh., Khromov A. P., “The resolvent approach for the wave equation”, Comput. Math. Math. Phys., 55:2 (2015), 227–239 | DOI | DOI | MR | Zbl

[3] Kornev V. V., Khromov A. P., “Resolvent approach to the Fourier method in a mixed problem for the wave equation”, Comput. Math. Math. Phys., 55:4 (2015), 618–627 | DOI | DOI | MR | Zbl

[4] Kornev V. V., Khromov A. P., “A resolvent approach in the Fourier method for the wave equation: the non-selfadjoint case”, Comput. Math. Math. Phys., 55:7 (2015), 1138–1149 | DOI | DOI | MR | Zbl

[5] Petrovskii I. G., Lectures on Partial Differential Equations, Fizmatgiz, M., 1961, 400 pp. (in Russian)

[6] Chernyatin V. A., Justification of the Fourier method in a mixed problem for partial differential equations, Moscow Univ. Press, M., 1991, 112 pp. (in Russian)

[7] Rasulov M. L., The method of the contour integral, Nauka, M., 1964, 462 pp. (in Russian)

[8] Vagabov A. I., Introduction to the spectral theory of differential operators, Rostov Univ. Press, Rostov-on-Don, 1994, 106 pp. (in Russian)