Spectral analysis of a class of difference operators with growing potential
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 395-402.

Voir la notice de l'article provenant de la source Math-Net.Ru

The similar operator method is used for the spectral analysis of the closed difference operator of the form $ (\mathcal{A} x)(n) = x(n + 1) + x(n-1)-2x(n) + a (n)x(n), n \in \mathbb{Z} $ under consideration in the Hilbert space $ l_ {2} (\mathbb{Z}) $ of bilateral sequences of complex numbers, with a growing potential $ a: \mathbb{Z} \to \mathbb{C} $. The asymptotic estimates of eigenvalue, eigenvectors, spectral estimation of equiconvergence applications for the test operator and the operator of multiplication by a sequence $ a: \mathbb{Z} \to \mathbb{C} $. For the study of the operator, it is represented in the form of $ A-B $, where $ (Ax) (n) = a (n) x (n)$, $n \in \mathbb{Z}$, $x \in l_2 (\mathbb{Z}) $ with the natural domain. This operator is normal with known spectral properties and acts as the unperturbed operator in the method of similar operators. The bounded operator $ (Bx)(n)=-x(n+1)-x(n-1)+2x(n)$, $n \in \mathbb{Z}$, $x \in l_2(\mathbb{Z})$, acts as the perturbation.
@article{ISU_2016_16_4_a3,
     author = {G. V. Garkavenko and N. B. Uskova},
     title = {Spectral analysis of a class of difference operators with growing potential},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {395--402},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a3/}
}
TY  - JOUR
AU  - G. V. Garkavenko
AU  - N. B. Uskova
TI  - Spectral analysis of a class of difference operators with growing potential
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 395
EP  - 402
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a3/
LA  - ru
ID  - ISU_2016_16_4_a3
ER  - 
%0 Journal Article
%A G. V. Garkavenko
%A N. B. Uskova
%T Spectral analysis of a class of difference operators with growing potential
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 395-402
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a3/
%G ru
%F ISU_2016_16_4_a3
G. V. Garkavenko; N. B. Uskova. Spectral analysis of a class of difference operators with growing potential. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 395-402. http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a3/

[1] Musilimov B., Otelbaev M., “Estimation of the least eigenvalues for the matrix class corresponding to the Sturm–Liouville difference equation”, U.S.S.R. Comput. Math. Math. Phys., 21:6 (1981), 68–73 | DOI | MR | Zbl

[2] Baskakov A. G., “Method of abstract harmonic analysis in the theory of perturbation of linear operators”, Siberian Math. J., 24:1 (1983), 17–32 | DOI | MR

[3] Baskakov A. G., “A theorem on splitting an operator, and some related questions in the analytic theory of perturbations”, Math. USSR-Izv., 28:3 (1987), 421–444 | DOI | MR | Zbl

[4] Baskakov A. G., “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 1–31 | DOI | MR

[5] Baskakov A. G., Derbushev A. V., Shcherbakov A. O., “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | DOI | DOI | MR | MR | Zbl

[6] Uskova N. B., “On spectral properties of Shturm–Liouville operator with matrix potential”, Ufa Math. J., 7:3 (2015), 84–94 | DOI | MR | Zbl

[7] Polyakov D. M., “Spectral analiysis of a forth-order nonsefaioint operator with nonsmoth coefficients”, Siberian Math. J., 56:1 (2015), 138–154 | DOI | MR | Zbl

[8] Baskakov A. G., “Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relation”, Sb. Math., 206:8 (2015), 1049–1086 | DOI | DOI | MR | Zbl

[9] Garkavenko G. V., “On diagonalization of certian classes of linear operator”, Russian Math. (Iz. VUZ), 38:11 (1994), 11–16 | MR | MR | Zbl

[10] Uskova N. B., “On the method of similar operators in Banach algebras”, Russian Math. (Iz. VUZ), 49:3 (2005), 75–81 | MR | Zbl

[11] Uskova N. B., “On the spectral properties of a second-order differential operator with a matrix potential”, Differential Equations, 52:5 (2016), 557–567 | DOI | DOI | MR | Zbl

[12] Danford N., Schwartz J. T., Linear Operators, v. III, Spectral Operators, Interscience Publ., New York, 1971, 689 pp.