Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_4_a3, author = {G. V. Garkavenko and N. B. Uskova}, title = {Spectral analysis of a class of difference operators with growing potential}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {395--402}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a3/} }
TY - JOUR AU - G. V. Garkavenko AU - N. B. Uskova TI - Spectral analysis of a class of difference operators with growing potential JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 395 EP - 402 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a3/ LA - ru ID - ISU_2016_16_4_a3 ER -
%0 Journal Article %A G. V. Garkavenko %A N. B. Uskova %T Spectral analysis of a class of difference operators with growing potential %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 395-402 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a3/ %G ru %F ISU_2016_16_4_a3
G. V. Garkavenko; N. B. Uskova. Spectral analysis of a class of difference operators with growing potential. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 395-402. http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a3/
[1] Musilimov B., Otelbaev M., “Estimation of the least eigenvalues for the matrix class corresponding to the Sturm–Liouville difference equation”, U.S.S.R. Comput. Math. Math. Phys., 21:6 (1981), 68–73 | DOI | MR | Zbl
[2] Baskakov A. G., “Method of abstract harmonic analysis in the theory of perturbation of linear operators”, Siberian Math. J., 24:1 (1983), 17–32 | DOI | MR
[3] Baskakov A. G., “A theorem on splitting an operator, and some related questions in the analytic theory of perturbations”, Math. USSR-Izv., 28:3 (1987), 421–444 | DOI | MR | Zbl
[4] Baskakov A. G., “Spectral analysis of perturbed nonquasianalytic and spectral operators”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 1–31 | DOI | MR
[5] Baskakov A. G., Derbushev A. V., Shcherbakov A. O., “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | DOI | DOI | MR | MR | Zbl
[6] Uskova N. B., “On spectral properties of Shturm–Liouville operator with matrix potential”, Ufa Math. J., 7:3 (2015), 84–94 | DOI | MR | Zbl
[7] Polyakov D. M., “Spectral analiysis of a forth-order nonsefaioint operator with nonsmoth coefficients”, Siberian Math. J., 56:1 (2015), 138–154 | DOI | MR | Zbl
[8] Baskakov A. G., “Estimates for the Green's function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear relation”, Sb. Math., 206:8 (2015), 1049–1086 | DOI | DOI | MR | Zbl
[9] Garkavenko G. V., “On diagonalization of certian classes of linear operator”, Russian Math. (Iz. VUZ), 38:11 (1994), 11–16 | MR | MR | Zbl
[10] Uskova N. B., “On the method of similar operators in Banach algebras”, Russian Math. (Iz. VUZ), 49:3 (2005), 75–81 | MR | Zbl
[11] Uskova N. B., “On the spectral properties of a second-order differential operator with a matrix potential”, Differential Equations, 52:5 (2016), 557–567 | DOI | DOI | MR | Zbl
[12] Danford N., Schwartz J. T., Linear Operators, v. III, Spectral Operators, Interscience Publ., New York, 1971, 689 pp.