The Fourier series of the Meixner polynomials orthogonal with respect to the Sobolev-type inner product
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 388-395.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the system of discrete functions $\left\{\varphi_{r,k}(x)\right\}_{k=0}^\infty,$ which is orthonormal with respect to the Sobolev-type inner product \begin{equation*} \langle f,g \rangle=\sum_{\nu=0}^{r-1}\Delta^{\nu} f(-r)\Delta^{\nu} g(-r) + \sum_{t\in\Omega_r}\Delta^r f(t) \Delta^r g(t)\mu(t), \end{equation*} where $\mu(t)=q^t(1-q)$, $0$ It is shown that the shifted classical Meixner polynomials $\left\{M_k^{-r}(x+r)\right\}_{k=r}^\infty$ together with functions $\left\{{(x+r)^{[k]}\over k!}\right\}_{k=0}^{r-1}$ form a complete orthogonal system in the space $l_{2,\mu}(\Omega_r)$ with respect to the Sobolev-type inner product. It is shown that the Fourier series on Meixner polynomials $\left\{a_kM_k^{-r}(x+r)\right\}_{k=r}^\infty$ ($a_k$ — normalizing factors), orthonormal in terms of Sobolev, is a special case of mixed series on Meixner polynomials. Some new special series on Meixner orthogonal polynomials $M_k^\alpha(x)$ with $\alpha>-1$ are considered. In the case when $\alpha=r$ these special series coincide with mixed series on Meixner polynomials $M_k^0(x)$ and Fourier series on the system $\left\{a_kM_k^{-r}(x+r)\right\}_{k=r}^\infty$ orthonormal with respect to the Sobolev-type inner product.
@article{ISU_2016_16_4_a2,
     author = {R. M. Gadzhimirzaev},
     title = {The {Fourier} series of the {Meixner} polynomials orthogonal with respect to the {Sobolev-type} inner product},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {388--395},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a2/}
}
TY  - JOUR
AU  - R. M. Gadzhimirzaev
TI  - The Fourier series of the Meixner polynomials orthogonal with respect to the Sobolev-type inner product
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 388
EP  - 395
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a2/
LA  - ru
ID  - ISU_2016_16_4_a2
ER  - 
%0 Journal Article
%A R. M. Gadzhimirzaev
%T The Fourier series of the Meixner polynomials orthogonal with respect to the Sobolev-type inner product
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 388-395
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a2/
%G ru
%F ISU_2016_16_4_a2
R. M. Gadzhimirzaev. The Fourier series of the Meixner polynomials orthogonal with respect to the Sobolev-type inner product. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 388-395. http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a2/

[1] Area I., Godoy E., Marcellán F., “Inner products involving differences : the Meixner–Sobolev polynomials”, J. Differ. Equ. Appl., 6:1 (2000), 1–31 | DOI | MR | Zbl

[2] Marcellan F., Xu Y., “On Sobolev orthogonal polynomials”, Expositiones Mathematicae, 33:3 (2015), 308–352 | DOI | MR | Zbl

[3] Perez T. E., Piñar M. A., Xu Y., “Weighted Sobolev orthogonal polynomials on the unit ball”, J. Approx. Theory, 171 (2013), 84–104 | DOI | MR | Zbl

[4] Delgado A. M., Fernandez L., Lubinsky D. S., Perez T. E., Piñar M. A., “Sobolev orthogonal polynomials on the unit ball via outward normal derivatives”, J. Math. Anal. Appl., 440:2 (2016), 716–740 | DOI | MR | Zbl

[5] Fernández L., Marcellán F., Pérez T. E., Pinar M. A., Xu Y., “Sobolev orthogonal polynomials on product domains”, J. Comput. Appl. Math., 284 (2015), 202–215 | DOI | MR | Zbl

[6] López G., Marcellán F., Van Assche W., “Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner-product”, Constr. Approx., 11:1 (1995), 107–137 | DOI | MR | Zbl

[7] Gonchar A. A., “On convergence of Padé approximants for some classes of meromorphic functions”, Math. USSR-Sb., 26:4 (1975), 555–575 | DOI | MR

[8] Sharapudinov I. I., “Approximation properties of the operators $Y_{n+2r}(f)$ and of their discrete analogs”, Math. Notes, 72:5 (2002), 705–732 | DOI | DOI | MR | Zbl

[9] Sharapudinov I. I., Mixed series of orthogonal polynomials. Theory and Applications, Dagestan Scientific Center RAS, Makhachkala, 2004, 276 pp. (in Russian)

[10] Sharapudinov I. I., “Mixed series of Chebyshev polynomials orthogonal on a uniform grid”, Math. Notes, 78:3 (2005), 403–423 | DOI | DOI | MR | Zbl

[11] Sharapudinov I. I., “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$”, Sb. Math., 197:3 (2006), 433–452 | DOI | DOI | MR | Zbl

[12] Sharapudinov I. I., “Approximation properties of the Valle–Poussin means of partial sums of a mixed series of Legendre polynomials”, Math. Notes, 84:3–4 (2008), 417–434 | DOI | DOI | MR | Zbl

[13] Gadzhieva Z. D., Mixed series of Meixner polynomials, Diss. phys. and math. sci., Saratov State Univ., Saratov, 2004, 103 pp. (in Russian)

[14] Sharapudinov I. I., “Special (mixed) series of the classical Laguerre polynomials and some of their applications”, Sequential analysis and related questions of mathematical modeling, Book of Abstracts of the XII Intern. Sci. Conf. (village Tsey, 12–18 July 2015), UMI VSC RAS, Vladikavkaz, 48–49 (in Russian)