The Fourier series of the Meixner polynomials orthogonal with respect to the Sobolev-type inner product
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 388-395

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the system of discrete functions $\left\{\varphi_{r,k}(x)\right\}_{k=0}^\infty,$ which is orthonormal with respect to the Sobolev-type inner product \begin{equation*} \langle f,g \rangle=\sum_{\nu=0}^{r-1}\Delta^{\nu} f(-r)\Delta^{\nu} g(-r) + \sum_{t\in\Omega_r}\Delta^r f(t) \Delta^r g(t)\mu(t), \end{equation*} where $\mu(t)=q^t(1-q)$, $0$ It is shown that the shifted classical Meixner polynomials $\left\{M_k^{-r}(x+r)\right\}_{k=r}^\infty$ together with functions $\left\{{(x+r)^{[k]}\over k!}\right\}_{k=0}^{r-1}$ form a complete orthogonal system in the space $l_{2,\mu}(\Omega_r)$ with respect to the Sobolev-type inner product. It is shown that the Fourier series on Meixner polynomials $\left\{a_kM_k^{-r}(x+r)\right\}_{k=r}^\infty$ ($a_k$ — normalizing factors), orthonormal in terms of Sobolev, is a special case of mixed series on Meixner polynomials. Some new special series on Meixner orthogonal polynomials $M_k^\alpha(x)$ with $\alpha>-1$ are considered. In the case when $\alpha=r$ these special series coincide with mixed series on Meixner polynomials $M_k^0(x)$ and Fourier series on the system $\left\{a_kM_k^{-r}(x+r)\right\}_{k=r}^\infty$ orthonormal with respect to the Sobolev-type inner product.
@article{ISU_2016_16_4_a2,
     author = {R. M. Gadzhimirzaev},
     title = {The {Fourier} series of the {Meixner} polynomials orthogonal with respect to the {Sobolev-type} inner product},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {388--395},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a2/}
}
TY  - JOUR
AU  - R. M. Gadzhimirzaev
TI  - The Fourier series of the Meixner polynomials orthogonal with respect to the Sobolev-type inner product
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 388
EP  - 395
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a2/
LA  - ru
ID  - ISU_2016_16_4_a2
ER  - 
%0 Journal Article
%A R. M. Gadzhimirzaev
%T The Fourier series of the Meixner polynomials orthogonal with respect to the Sobolev-type inner product
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 388-395
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a2/
%G ru
%F ISU_2016_16_4_a2
R. M. Gadzhimirzaev. The Fourier series of the Meixner polynomials orthogonal with respect to the Sobolev-type inner product. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 388-395. http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a2/