On the $L^1$-convergence of series in multiplicative systems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 371-377.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper two analogs of Garrett–Stanojević trigonometric results are established for multiplicative systems $\{\chi_n\}_{n=0}^\infty$ of bounded type. First, the modified partial sums of a series $\sum\limits^\infty_{k=0}a_k\chi_k$ with coefficients of bounded variation converge in $L^1[0,1)$ to its sum if and only if for all $\varepsilon>0$ there exists $\delta>0$ such that $\int^\delta_0\left|\sum\limits^\infty_{k=n}(a_k-a_{k+1})D_{k+1}(x)\right|\,dx\varepsilon, \quad n\in\mathbb Z_+,$ where $D_{k+1}(x)=\sum\limits^k_{i=0}\chi_i(x)$. Secondly, if $\lim\limits_{n\to\infty}a_n\ln(n+1)=0$ and $\sum\limits^\infty_{k=n}|a_k-a_{k+1}|\leq Ca_n$, $n\in\mathbb Z_+$, then the series $\sum\limits^\infty_{n=0}a_n\chi_n(x)$ converges to its sum $f(x)$ in $L^1[0,1)$ if and only if $f\in L^1[0,1)$.
@article{ISU_2016_16_4_a0,
     author = {N. Yu. Agafonova},
     title = {On the $L^1$-convergence of series in multiplicative systems},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {371--377},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a0/}
}
TY  - JOUR
AU  - N. Yu. Agafonova
TI  - On the $L^1$-convergence of series in multiplicative systems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 371
EP  - 377
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a0/
LA  - ru
ID  - ISU_2016_16_4_a0
ER  - 
%0 Journal Article
%A N. Yu. Agafonova
%T On the $L^1$-convergence of series in multiplicative systems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 371-377
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a0/
%G ru
%F ISU_2016_16_4_a0
N. Yu. Agafonova. On the $L^1$-convergence of series in multiplicative systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 371-377. http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a0/

[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Walsh series and transforms. Theory and applications, Kluwer Academic Publ., Dordrecht, 1991, 380 pp. | MR | MR | Zbl

[2] Onneweer C. W., “On Moduli of Continuity and Divergence of Fourier Series on Groups”, Proc. Amer. Math. Soc., 29:1 (1971), 109–112 | DOI | MR | Zbl

[3] Yano Sh., “On Walsh–Fourier series”, Tohoku Math. J., 3:2 (1951), 223–242 | DOI | MR | Zbl

[4] Kolmogoroff A., “Sur l'ordre de grandeur des coefficient de la serie de Fourier–Lebesgue”, Bull. Acad. Polon., 1923, no. A, 83–86

[5] Garrett J. W., Stanojević Č. V., “On $L^1$ convergence of certain cosine sums”, Proc. Amer. Math. Soc., 54:1 (1976), 101–105 | DOI | MR | Zbl

[6] Garrett J. W., Stanojević Č. V., “Necessary and sufficient conditions for $ L\sp{1}$ convergence of trigonometric series”, Proc. Amer. Math. Soc., 60:1 (1976), 68–71 | DOI | MR

[7] Agayev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshteyn A. I., Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups, Elm, Baku, 1981, 180 pp. (in Russian) | MR

[8] Iofina T. V., Volosivets S. S., “On the degree of approximation by means of Fourier–Vilenkin series in Holder and $L_p$ norm”, East J. Approx., 15:3 (2009), 143–158 | MR | Zbl

[9] Volosivets S. S., Fadeev R. N., “Estimates of best approximations in integral metrics and Fourier coefficients with respect to multiplicative systems”, Analysis Mathematica, 37:3 (2011), 215–238 | DOI | MR | Zbl

[10] Zelin H., “The derivatives and integrals of fractional order in Walsh–Fourier analysis, with applications to approximation theory”, J. of Approx. Theory, 39:4 (1983), 361–373 | DOI | MR | Zbl