Sobolev orthogonal polynomials generated by Meixner polynomials
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 310-321

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of constructing Sobolev orthogonal polynomials $m _{r,n}^{\alpha}(x,q)$ $(n=0,1,\ldots)$, generated by classical Meixner's polynomials is considered. They can by defined using the following equalities $m_{r,k}^{\alpha}(x,q)={x^{[k]}\over k!}$, $x^{[k]}=x(x-1)\cdots(x-k+1)$, $k=0,1,\ldots,r-1$, $m_{r,k+r}^{\alpha}(x,q)=\frac{1}{(r-1)!}\sum\limits_{t=0}^{x-r}(x-1-t)^{[r-1]}m_{k}^{\alpha}(t,q)$, where $m_{k}^{\alpha}(t,q)$ denote Meixner's polynomial of degree $k$, orthonormal on $\Omega=\{0,1,\ldots\}$ with weight $\rho(x)=q^x\frac{\Gamma(x+\alpha+1)}{\Gamma(x+1)}(1-q)^{\alpha+1}$. Polynomials $m _{r,n}^{\alpha}(x,q)$, $(n=0,1,\ldots)$ are orthonormal on $\Omega=\{0,1,\ldots\}$ with respect to the inner product $$ \langle m_{r,n}^{\alpha},m_{r,m}^{\alpha}\rangle= \sum\limits_{k=0}^{r-1}\Delta^km_{r,n}^{\alpha}(0,q)\Delta^km_{r,m}^{\alpha}(0,q)+ \sum\limits_{j=0}^{\infty}\Delta^rm_{r,n}^{\alpha}(j,q)\Delta^r m_{r,m}^{\alpha}(j,q)\rho(j). $$ For $m_{r,n}^{\alpha}(x,q)$ we obtain the explicit formula that contains the Мeixner polynomial $M_{n}^{\alpha-r}(x,q)$: $$ m_{r,k+r}^{\alpha}(x,q)=\big(\frac{q}{q-1}\big)^r\left\{h_{k}^{\alpha}(q)\right\}^{-1/2} \left[M_{k+r}^{\alpha-r}(x,q)-\sum\limits_{\nu=0}^{r-1}\frac{A_{r,k,\nu}x^{[\nu]}}{\nu!}\right], k=0,1,\ldots, $$ where $A_{r,k,\nu}=\Big({q-1\over q}\Big)^\nu \frac{\Gamma(k+\alpha+1)}{(k+r-\nu)!\Gamma(\nu-r+\alpha+1)}$, $M_n^\alpha(x,q)=\frac{\Gamma (n+\alpha+1)}{n!} \sum_{k=0}^n{n^{[k]}x^{[k]}\over \Gamma (k+\alpha+1)k!}\left(1-{1\over q}\right)^k$, $h_n^\alpha(q)= {n+\alpha\choose n}q^{-n}\Gamma(\alpha+1)$.
@article{ISU_2016_16_3_a8,
     author = {I. I. Sharapudinov and Z. D. Gadzhieva},
     title = {Sobolev orthogonal polynomials generated by {Meixner} polynomials},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {310--321},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a8/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - Z. D. Gadzhieva
TI  - Sobolev orthogonal polynomials generated by Meixner polynomials
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 310
EP  - 321
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a8/
LA  - ru
ID  - ISU_2016_16_3_a8
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A Z. D. Gadzhieva
%T Sobolev orthogonal polynomials generated by Meixner polynomials
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 310-321
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a8/
%G ru
%F ISU_2016_16_3_a8
I. I. Sharapudinov; Z. D. Gadzhieva. Sobolev orthogonal polynomials generated by Meixner polynomials. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 310-321. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a8/