Sobolev orthogonal polynomials generated by Meixner polynomials
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 310-321.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of constructing Sobolev orthogonal polynomials $m _{r,n}^{\alpha}(x,q)$ $(n=0,1,\ldots)$, generated by classical Meixner's polynomials is considered. They can by defined using the following equalities $m_{r,k}^{\alpha}(x,q)={x^{[k]}\over k!}$, $x^{[k]}=x(x-1)\cdots(x-k+1)$, $k=0,1,\ldots,r-1$, $m_{r,k+r}^{\alpha}(x,q)=\frac{1}{(r-1)!}\sum\limits_{t=0}^{x-r}(x-1-t)^{[r-1]}m_{k}^{\alpha}(t,q)$, where $m_{k}^{\alpha}(t,q)$ denote Meixner's polynomial of degree $k$, orthonormal on $\Omega=\{0,1,\ldots\}$ with weight $\rho(x)=q^x\frac{\Gamma(x+\alpha+1)}{\Gamma(x+1)}(1-q)^{\alpha+1}$. Polynomials $m _{r,n}^{\alpha}(x,q)$, $(n=0,1,\ldots)$ are orthonormal on $\Omega=\{0,1,\ldots\}$ with respect to the inner product $$ \langle m_{r,n}^{\alpha},m_{r,m}^{\alpha}\rangle= \sum\limits_{k=0}^{r-1}\Delta^km_{r,n}^{\alpha}(0,q)\Delta^km_{r,m}^{\alpha}(0,q)+ \sum\limits_{j=0}^{\infty}\Delta^rm_{r,n}^{\alpha}(j,q)\Delta^r m_{r,m}^{\alpha}(j,q)\rho(j). $$ For $m_{r,n}^{\alpha}(x,q)$ we obtain the explicit formula that contains the Мeixner polynomial $M_{n}^{\alpha-r}(x,q)$: $$ m_{r,k+r}^{\alpha}(x,q)=\big(\frac{q}{q-1}\big)^r\left\{h_{k}^{\alpha}(q)\right\}^{-1/2} \left[M_{k+r}^{\alpha-r}(x,q)-\sum\limits_{\nu=0}^{r-1}\frac{A_{r,k,\nu}x^{[\nu]}}{\nu!}\right], k=0,1,\ldots, $$ where $A_{r,k,\nu}=\Big({q-1\over q}\Big)^\nu \frac{\Gamma(k+\alpha+1)}{(k+r-\nu)!\Gamma(\nu-r+\alpha+1)}$, $M_n^\alpha(x,q)=\frac{\Gamma (n+\alpha+1)}{n!} \sum_{k=0}^n{n^{[k]}x^{[k]}\over \Gamma (k+\alpha+1)k!}\left(1-{1\over q}\right)^k$, $h_n^\alpha(q)= {n+\alpha\choose n}q^{-n}\Gamma(\alpha+1)$.
@article{ISU_2016_16_3_a8,
     author = {I. I. Sharapudinov and Z. D. Gadzhieva},
     title = {Sobolev orthogonal polynomials generated by {Meixner} polynomials},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {310--321},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a8/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - Z. D. Gadzhieva
TI  - Sobolev orthogonal polynomials generated by Meixner polynomials
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 310
EP  - 321
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a8/
LA  - ru
ID  - ISU_2016_16_3_a8
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A Z. D. Gadzhieva
%T Sobolev orthogonal polynomials generated by Meixner polynomials
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 310-321
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a8/
%G ru
%F ISU_2016_16_3_a8
I. I. Sharapudinov; Z. D. Gadzhieva. Sobolev orthogonal polynomials generated by Meixner polynomials. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 310-321. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a8/

[1] Iserles A., Koch P. E., Norsett S. P., Sanz-Serna J. M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65:2 (1991), 151–175 | DOI | MR | Zbl

[2] Marcellán F., Alfaro M., Rezola M. L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, J. Comput. Appl. Math., 48:1–2 (1993), 113–131 | DOI | MR | Zbl

[3] Meijer H. G., “Laguerre polynimials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73:1 (1993), 1–16 | DOI | MR | Zbl

[4] Kwon K. H., Littlejohn L. L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 2 (1995), 289–303 | MR | Zbl

[5] Kwon K. H., Littlejohn L. L., “Sobolev orthogonal polynomials and second-order differential equations”, Ann. Numer. Anal., 28 (1998), 547–594 | MR | Zbl

[6] Marcellan F., Yuan Xu, On Sobolev orthogonal polynomials, 25 Mar 2014, 40 pp., arXiv: 6249v1 [math.C.A] | MR

[7] Sharapudinov I. I., “Approximation of discrete functions and Chebyshev polynomials orthogonal on the uniform grid”, Math. Notes, 67:3 (2000), 389–397 | DOI | DOI | MR | Zbl

[8] Sharapudinov I. I., “Approximation of functions of variable smoothness by Fourier–Legendre sums”, Sb. Math., 191:5 (2000), 759–777 | DOI | DOI | MR | Zbl

[9] Sharapudinov I. I., “Approximation properties of the operators ${\cal Y}_{n+2r}(f)$ and of their discrete analogs”, Math. Notes, 72:5 (2002), 705–732 | DOI | DOI | MR | Zbl

[10] Sharapudinov I. I., “Mixed series in ultraspherical polynomials and their approximation properties”, Sb. Math., 194:3 (2003), 423–456 | DOI | DOI | MR | Zbl

[11] Sharapudinov I. I., Mixed series of orthogonal polynomials, Dagestan Scientific Center RAS, Makhachkala, 2004, 176 pp. (in Russian)

[12] Sharapudinov I. I., “Mixed series of Chebyshev polynomials orthogonal on a uniform grid”, Math. Notes, 78:3 (2005), 403–423 | DOI | DOI | MR | Zbl

[13] Sharapudinov I. I., “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$”, Sb. Math., 197:3 (2006), 433–452 | DOI | DOI | MR | Zbl

[14] Sharapudinov T. I., “Approximative properties of mixed series by Chebyshev polynomials, orthogonal on an uniform net”, Vestnik Dagestan. nauch. centra RAN, 29 (2007), 12–23 (in Russian) | Zbl

[15] Sharapudinov I. I., “Approximation properties of the Vallee–Poussin means of partial sums of a mixed series of Legendre polynomials”, Math. Notes, 84:3–4 (2008), 417–434 | DOI | DOI | MR | Zbl

[16] Sharapudinov I. I., Muratova G. N., “Same Properties $r$-fold Integration Series on Fourier–Haar System”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 9:1 (2009), 68–76 (in Russian) | Zbl

[17] Sharapudinov I. I., Sharapudinov T. I., “Mixed series of Jacobi and Chebyshev polynomials and their discretization”, Math. Notes, 88:1–2 (2010), 112–139 | DOI | DOI | MR | Zbl

[18] Sharapudinov I. I., “System functions orthogonal on Sobolev generated orthogonal functions”, Modern problems of function theory and their applications, Proc. 18th Intern. Sarat. Winter School, OOO Izd-vo “Nauchnaia kniga”, Saratov, 2016, 329–332

[19] Trefethen L. N., Spectral methods in Matlab, SIAM, Fhiladelphia, 2000, 160 pp. | MR | Zbl

[20] Trefethen L. N., Finite difference and spectral methods for ordinary and partial differential equation, Cornell University, 1996, 325 pp.

[21] Magomed-Gasimov M. G., “Approximate solution of ordinary differential equations with the use of mixed series on the Haar system”, Modern problems of function theory and their applications, Proc. 18th Intern. Sarat. Winter School, OOO Izd-vo “Nauchnaia kniga”, Saratov, 2016, 176–178

[22] Sharapudinov I. I., Polynomials orthogonal on discrete grids, Izd-vo Dag. Gos. Ped. Un-ta, Mahachkala, 1997, 252 pp. (in Russian)

[23] Gasper G., “Positivity and special function”, Theory and Application of Special Functions, Proceedings of an Advanced Seminar Sponsored by the Mathematics Research Center, the University of Wisconsin-Madison (March 31–April 2, 1975), ed. R. Askey, Academic Press, Inc., N. Y.–San Francisco–L., 1975, 375–433 | DOI | MR