Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_3_a3, author = {I. V. Grebennikova and A. G. Kremlev}, title = {Iterative procedure of constructing optimal solving in the minimax problem of control for singularly perturbed system with delay with geometric constraints}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {272--280}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a3/} }
TY - JOUR AU - I. V. Grebennikova AU - A. G. Kremlev TI - Iterative procedure of constructing optimal solving in the minimax problem of control for singularly perturbed system with delay with geometric constraints JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 272 EP - 280 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a3/ LA - ru ID - ISU_2016_16_3_a3 ER -
%0 Journal Article %A I. V. Grebennikova %A A. G. Kremlev %T Iterative procedure of constructing optimal solving in the minimax problem of control for singularly perturbed system with delay with geometric constraints %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 272-280 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a3/ %G ru %F ISU_2016_16_3_a3
I. V. Grebennikova; A. G. Kremlev. Iterative procedure of constructing optimal solving in the minimax problem of control for singularly perturbed system with delay with geometric constraints. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 272-280. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a3/
[1] Krasovskii N. N., The Theory of Motion Control, Nauka, M., 1968, 475 pp. (in Russian)
[2] Kurzhanskij A. B., Control and Observation under the Uncertainty Conditions, Nauka, M., 1977, 392 pp. (in Russian)
[3] Kremlev A. G., “Asymptotic properties of a set of trajectories of a singularly perturbed system in the optimal control problem”, Autom. Remote Control, 54:9 (1993), 1353–1367 | MR | Zbl
[4] Grebennikova I. V., “Solution approximation in a minimax control problem for a singularly perturbed system with delay”, Russian Math., 55:10 (2011), 23–33 | DOI | MR | Zbl
[5] Grebennikova I. V., Kremlev A. G., “Approximation of control for singularly perturbed system with delay with geometric constraints”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:2 (2015), 142–151 (in Russian) | DOI
[6] Rokafellar R., Convex Analysis, Mir, M., 1973, 492 pp. (in Russian)
[7] Krasovskii N. N., Some Problems in the Theory of Stability of Motion, Fizmatgiz, M., 1959, 468 pp. (in Russian)
[8] Natanson I. P., Theory of Functions of a Real Variable, Nauka, M., 1974, 468 pp. (in Russian)
[9] Grebennikova I. V., “On iterative method of constructing optimal control for singularly perturbed systems with delay”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 9:3 (2009), 14–22 (in Russian) | MR | Zbl
[10] Kirillova F. M., “Relative controllability of linear dynamic systems with delay”, Doklady AN SSSR, 174:6 (1967), 1260–1263 (in Russian) | MR | Zbl