Iterative procedure of constructing optimal solving in the minimax problem of control for singularly perturbed system with delay with geometric constraints
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 272-280.

Voir la notice de l'article provenant de la source Math-Net.Ru

The control problem for the singularly perturbed system with delay with indeterminate initial conditions and geometric constraints on the control resources according to the minimax criterion is considered. Iterative procedure of constructing control response that approximates the optimal solution with given accuracy with respect to a small positive parameter is proposed.
@article{ISU_2016_16_3_a3,
     author = {I. V. Grebennikova and A. G. Kremlev},
     title = {Iterative procedure of constructing optimal solving in the minimax problem of control for singularly perturbed system with delay with geometric constraints},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {272--280},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a3/}
}
TY  - JOUR
AU  - I. V. Grebennikova
AU  - A. G. Kremlev
TI  - Iterative procedure of constructing optimal solving in the minimax problem of control for singularly perturbed system with delay with geometric constraints
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 272
EP  - 280
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a3/
LA  - ru
ID  - ISU_2016_16_3_a3
ER  - 
%0 Journal Article
%A I. V. Grebennikova
%A A. G. Kremlev
%T Iterative procedure of constructing optimal solving in the minimax problem of control for singularly perturbed system with delay with geometric constraints
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 272-280
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a3/
%G ru
%F ISU_2016_16_3_a3
I. V. Grebennikova; A. G. Kremlev. Iterative procedure of constructing optimal solving in the minimax problem of control for singularly perturbed system with delay with geometric constraints. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 272-280. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a3/

[1] Krasovskii N. N., The Theory of Motion Control, Nauka, M., 1968, 475 pp. (in Russian)

[2] Kurzhanskij A. B., Control and Observation under the Uncertainty Conditions, Nauka, M., 1977, 392 pp. (in Russian)

[3] Kremlev A. G., “Asymptotic properties of a set of trajectories of a singularly perturbed system in the optimal control problem”, Autom. Remote Control, 54:9 (1993), 1353–1367 | MR | Zbl

[4] Grebennikova I. V., “Solution approximation in a minimax control problem for a singularly perturbed system with delay”, Russian Math., 55:10 (2011), 23–33 | DOI | MR | Zbl

[5] Grebennikova I. V., Kremlev A. G., “Approximation of control for singularly perturbed system with delay with geometric constraints”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:2 (2015), 142–151 (in Russian) | DOI

[6] Rokafellar R., Convex Analysis, Mir, M., 1973, 492 pp. (in Russian)

[7] Krasovskii N. N., Some Problems in the Theory of Stability of Motion, Fizmatgiz, M., 1959, 468 pp. (in Russian)

[8] Natanson I. P., Theory of Functions of a Real Variable, Nauka, M., 1974, 468 pp. (in Russian)

[9] Grebennikova I. V., “On iterative method of constructing optimal control for singularly perturbed systems with delay”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 9:3 (2009), 14–22 (in Russian) | MR | Zbl

[10] Kirillova F. M., “Relative controllability of linear dynamic systems with delay”, Doklady AN SSSR, 174:6 (1967), 1260–1263 (in Russian) | MR | Zbl