Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_3_a13, author = {O. M. Kurganskyy and S. V. Sapunov}, title = {On the directional movement of a collective of automata without a compass on a one-dimensional integer lattice}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {356--365}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a13/} }
TY - JOUR AU - O. M. Kurganskyy AU - S. V. Sapunov TI - On the directional movement of a collective of automata without a compass on a one-dimensional integer lattice JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 356 EP - 365 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a13/ LA - ru ID - ISU_2016_16_3_a13 ER -
%0 Journal Article %A O. M. Kurganskyy %A S. V. Sapunov %T On the directional movement of a collective of automata without a compass on a one-dimensional integer lattice %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 356-365 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a13/ %G ru %F ISU_2016_16_3_a13
O. M. Kurganskyy; S. V. Sapunov. On the directional movement of a collective of automata without a compass on a one-dimensional integer lattice. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 356-365. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a13/
[1] Gasanov E. E., Kudryavtsev V. B., The theory of information storage and retrieval, Fizmatlit, M., 2002, 288 pp. (in Russian)
[2] Kapitonova Yu. V., Krivoy S. L., Letichevsky A. A., Lutskiy G. M., Lectures on discrete mathematics, BHV-Petersburg, Saint Petersburg, 2004, 624 pp. (in Russian)
[3] Novikov D. A., Cybernetics: From Past to Future, Springer, 2016, 115 pp.
[4] Kline R. R., The Cybernetics Moment: Or Why We Call Our Age the Information Age, Johns Hopkins Univ. Press, Baltimore, Maryland, 2015, 352 pp.
[5] Shannon Cl. E., “Presentation of a maze-solving machine”, Cybernetics: Circular, Causal and Feedback Mechanisms in Biological and Social Systems, Transactions of VIII Conference, Josiah Macy Jr. Foundation, N. Y., 1952, 169–181
[6] Glushkov V. M., Letichevsky A. A., “The theory of discrete converters”, Selected problems of algebra and logic, Nauka, Novosibirsk, 1973, 5–39 (in Russian)
[7] Kudryavtsev V. B., Aleshin S. V., Podkolzin A. S., Introduction to Automata Theory, Nauka, M., 1985, 320 pp. (in Russian)
[8] Kilibarda G., Kudryavtsev V. B., Ušćumlić Š., “Independent systems of automata in labyrinths”, Discrete Math. and Appl., 13:3 (2003), 221–255 | DOI | MR | Zbl
[9] Kilibarda G., Kudryavtsev V. B., Ušćumlić Š., “Collectives of automata in labyrinths”, Discrete Math. and Appl., 13:5 (2003), 429–466 | DOI | MR | Zbl
[10] Stamatovich B., “Recognizing simply connected numerals by automata”, Intelligent systems, 3:3–4 (1998), 281–305 (in Russian)
[11] Stamatovich B., “Recognizing doubly connected numerals by collectives of automata”, Intelligent systems, 4:1–2 (1998), 321–337 (in Russian) | Zbl
[12] Deglina Yu. B., Kozlovskii V. A., Kostogryz K. A., “Automata recognition of digitized polygons”, Artificial Intelligence, 2004, no. 3, 443–452 (in Russian)
[13] Dudek G., Jenkin M., Computational Principles of Mobile Robotics, Cambridge Univ. Press, Cambridge, 2010, 406 pp. | Zbl
[14] Blum M., Kozen D., “On the Power of the Compass”, Proc. 19th Annu. Symp. Found. Comput. Sci., SFCS '78, IEEE Computer Society Washington, 1978, 132–142 | DOI | MR
[15] Donald B. R., “The Compass That Steered Robotics”, Logic and Program Semantics, Springer, 2012, 50–65 | DOI | MR | Zbl
[16] Bhatt S., Even S., Greenberg D., Tayar R., “Traversing Directed Eulerian Mazes”, J. Graph Algorithms and Appl., 6:2 (2002), 157–173 | DOI | MR | Zbl
[17] Babichev A. V., “Orientation in a maze”, Automation and Remote Control, 69:2 (2008), 299–309 | DOI | MR | Zbl