Orthogonal shift systems in the field of $p$-adic numbers
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 256-262

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2010 S. Albeverio, S. Evdokimov and M. Skopina proved that if the shift system $(\varphi(x\dot-h))$ of a step function $\varphi$ is orthonormal and $\varphi$ generates $p$-adic MRA then its Fourier transform lies in the unit ball. We prove then in some cases the condition "$\varphi$ generates MRA" is possible to be omitted. In general, we indicate the number of linearly independent step-functions, which shifts form an orthonormal system.
@article{ISU_2016_16_3_a1,
     author = {A. M. Vodolazov and S. F. Lukomskii},
     title = {Orthogonal shift systems in the field of $p$-adic numbers},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {256--262},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a1/}
}
TY  - JOUR
AU  - A. M. Vodolazov
AU  - S. F. Lukomskii
TI  - Orthogonal shift systems in the field of $p$-adic numbers
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 256
EP  - 262
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a1/
LA  - ru
ID  - ISU_2016_16_3_a1
ER  - 
%0 Journal Article
%A A. M. Vodolazov
%A S. F. Lukomskii
%T Orthogonal shift systems in the field of $p$-adic numbers
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 256-262
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a1/
%G ru
%F ISU_2016_16_3_a1
A. M. Vodolazov; S. F. Lukomskii. Orthogonal shift systems in the field of $p$-adic numbers. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 256-262. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a1/