Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_3_a1, author = {A. M. Vodolazov and S. F. Lukomskii}, title = {Orthogonal shift systems in the field of $p$-adic numbers}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {256--262}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a1/} }
TY - JOUR AU - A. M. Vodolazov AU - S. F. Lukomskii TI - Orthogonal shift systems in the field of $p$-adic numbers JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 256 EP - 262 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a1/ LA - ru ID - ISU_2016_16_3_a1 ER -
%0 Journal Article %A A. M. Vodolazov %A S. F. Lukomskii %T Orthogonal shift systems in the field of $p$-adic numbers %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 256-262 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a1/ %G ru %F ISU_2016_16_3_a1
A. M. Vodolazov; S. F. Lukomskii. Orthogonal shift systems in the field of $p$-adic numbers. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 256-262. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a1/
[1] Lang W. C., “Orthogonal Wavelets on the Cantor Dyadic Group”, SIAM J. Math. Anal., 27:1 (1996), 305–312 | DOI | MR | Zbl
[2] Lang W. C., “Wavelet analysis on the Cantor dyadic group”, Housten J. Math., 24:3 (1998), 533–544 | MR | Zbl
[3] Lang W. C., “Fractal multiwavelets related to the Cantor dyadic group”, Intern. J. Math. Math. Sci., 21:2 (1998), 307–314 | DOI | MR | Zbl
[4] Protasov V. Yu., Farkov Yu. A., “Dyadic wavelets and refinable functions on a half-line”, Sb. Math., 197:10 (2006), 1529–1558 | DOI | MR | Zbl
[5] Farkov Yu. A., “Orthogonal wavelets with compact support on locally compact Abelian groups”, Izv. Math., 69:3 (2005), 623–650 | DOI | DOI | MR | Zbl
[6] Farkov Yu. A., “Orthogonal wavelets on direct products of cyclic”, Math. Notes, 82:5 (2007), 843–859 | DOI | DOI | MR | Zbl
[7] Lukomskii S. F., “Step refinable functions and orthogonal MRA on Vilenkin groups”, J. Fourier Anal. Appl., 20:1 (2014), 42–65 | DOI | MR | Zbl
[8] Khrennikov A. Yu., Shelkovich V. M., Skopina M., “$p$-adic refinable functions and MRA-based wavelets”, J. Approx. Theory, 161:1 (2009), 226–238 | DOI | MR | Zbl
[9] Albeverio S., Evdokimov S., Skopina M., “$p$-Adic Multiresolution Analysis and Wavelet Frames”, J. Fourier Anal. Appl., 16:5 (2010), 693–714 | DOI | MR | Zbl