Orthogonal shift systems in the field of $p$-adic numbers
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 256-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2010 S. Albeverio, S. Evdokimov and M. Skopina proved that if the shift system $(\varphi(x\dot-h))$ of a step function $\varphi$ is orthonormal and $\varphi$ generates $p$-adic MRA then its Fourier transform lies in the unit ball. We prove then in some cases the condition "$\varphi$ generates MRA" is possible to be omitted. In general, we indicate the number of linearly independent step-functions, which shifts form an orthonormal system.
@article{ISU_2016_16_3_a1,
     author = {A. M. Vodolazov and S. F. Lukomskii},
     title = {Orthogonal shift systems in the field of $p$-adic numbers},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {256--262},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a1/}
}
TY  - JOUR
AU  - A. M. Vodolazov
AU  - S. F. Lukomskii
TI  - Orthogonal shift systems in the field of $p$-adic numbers
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 256
EP  - 262
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a1/
LA  - ru
ID  - ISU_2016_16_3_a1
ER  - 
%0 Journal Article
%A A. M. Vodolazov
%A S. F. Lukomskii
%T Orthogonal shift systems in the field of $p$-adic numbers
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 256-262
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a1/
%G ru
%F ISU_2016_16_3_a1
A. M. Vodolazov; S. F. Lukomskii. Orthogonal shift systems in the field of $p$-adic numbers. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 256-262. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a1/

[1] Lang W. C., “Orthogonal Wavelets on the Cantor Dyadic Group”, SIAM J. Math. Anal., 27:1 (1996), 305–312 | DOI | MR | Zbl

[2] Lang W. C., “Wavelet analysis on the Cantor dyadic group”, Housten J. Math., 24:3 (1998), 533–544 | MR | Zbl

[3] Lang W. C., “Fractal multiwavelets related to the Cantor dyadic group”, Intern. J. Math. Math. Sci., 21:2 (1998), 307–314 | DOI | MR | Zbl

[4] Protasov V. Yu., Farkov Yu. A., “Dyadic wavelets and refinable functions on a half-line”, Sb. Math., 197:10 (2006), 1529–1558 | DOI | MR | Zbl

[5] Farkov Yu. A., “Orthogonal wavelets with compact support on locally compact Abelian groups”, Izv. Math., 69:3 (2005), 623–650 | DOI | DOI | MR | Zbl

[6] Farkov Yu. A., “Orthogonal wavelets on direct products of cyclic”, Math. Notes, 82:5 (2007), 843–859 | DOI | DOI | MR | Zbl

[7] Lukomskii S. F., “Step refinable functions and orthogonal MRA on Vilenkin groups”, J. Fourier Anal. Appl., 20:1 (2014), 42–65 | DOI | MR | Zbl

[8] Khrennikov A. Yu., Shelkovich V. M., Skopina M., “$p$-adic refinable functions and MRA-based wavelets”, J. Approx. Theory, 161:1 (2009), 226–238 | DOI | MR | Zbl

[9] Albeverio S., Evdokimov S., Skopina M., “$p$-Adic Multiresolution Analysis and Wavelet Frames”, J. Fourier Anal. Appl., 16:5 (2010), 693–714 | DOI | MR | Zbl