The solution of a certain inverse problem
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 180-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution is given for the problem of findinging uniform approximations of a the right-hand side of a general linear ordinary differential equation in the case when approximations of the exact solution are known. The constructed method has a simple structure, produces approximations of the right-hand side on the whole interval of definition and does not employ boundary conditions.
@article{ISU_2016_16_2_a8,
     author = {A. A. Khromov},
     title = {The solution of a certain inverse problem},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {180--183},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a8/}
}
TY  - JOUR
AU  - A. A. Khromov
TI  - The solution of a certain inverse problem
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 180
EP  - 183
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a8/
LA  - ru
ID  - ISU_2016_16_2_a8
ER  - 
%0 Journal Article
%A A. A. Khromov
%T The solution of a certain inverse problem
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 180-183
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a8/
%G ru
%F ISU_2016_16_2_a8
A. A. Khromov. The solution of a certain inverse problem. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 180-183. http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a8/

[1] Ivanov V. K., Vasin V. V., Tanana V. P., The theory of linear ill-posed problems and its applications, Nauka, M., 1978, 206 pp. (in Russian) | MR

[2] Denisov A. M., Introduction to the theory of inverse problems, Moscow Univ. Press, M., 1994, 206 pp. (in Russian)

[3] Khromov A. A., Khromova G. V., “The Solution of the Problem of Determining the Dendity of Heat Sources in a Rod”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 15:3 (2015), 309–314 (in Russian) | DOI | Zbl

[4] Khromov A. A., “Approximation of Function and Its Derivative by the Modificated Steklov Operator”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 14:4/2 (2014), 593–597 (in Russian)

[5] Khromov A. P., Khromova G. V., “Discontinuous Steklov operators in the problem of uniform approximation of derivatives on closed integral”, Comput. Math. Math. Phys., 54:9 (2014), 1389–1394 | DOI | DOI | MR | Zbl