Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_2_a8, author = {A. A. Khromov}, title = {The solution of a certain inverse problem}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {180--183}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a8/} }
A. A. Khromov. The solution of a certain inverse problem. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 180-183. http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a8/
[1] Ivanov V. K., Vasin V. V., Tanana V. P., The theory of linear ill-posed problems and its applications, Nauka, M., 1978, 206 pp. (in Russian) | MR
[2] Denisov A. M., Introduction to the theory of inverse problems, Moscow Univ. Press, M., 1994, 206 pp. (in Russian)
[3] Khromov A. A., Khromova G. V., “The Solution of the Problem of Determining the Dendity of Heat Sources in a Rod”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 15:3 (2015), 309–314 (in Russian) | DOI | Zbl
[4] Khromov A. A., “Approximation of Function and Its Derivative by the Modificated Steklov Operator”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 14:4/2 (2014), 593–597 (in Russian)
[5] Khromov A. P., Khromova G. V., “Discontinuous Steklov operators in the problem of uniform approximation of derivatives on closed integral”, Comput. Math. Math. Phys., 54:9 (2014), 1389–1394 | DOI | DOI | MR | Zbl