Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_2_a7, author = {A. Kh. Fatykhov and P. L. Shabalin}, title = {Investigation {Riemann--Hilbert} boundary value problem with infinite index on circle}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {174--180}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a7/} }
TY - JOUR AU - A. Kh. Fatykhov AU - P. L. Shabalin TI - Investigation Riemann--Hilbert boundary value problem with infinite index on circle JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 174 EP - 180 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a7/ LA - ru ID - ISU_2016_16_2_a7 ER -
%0 Journal Article %A A. Kh. Fatykhov %A P. L. Shabalin %T Investigation Riemann--Hilbert boundary value problem with infinite index on circle %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 174-180 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a7/ %G ru %F ISU_2016_16_2_a7
A. Kh. Fatykhov; P. L. Shabalin. Investigation Riemann--Hilbert boundary value problem with infinite index on circle. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 174-180. http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a7/
[1] Govorov N. V., Riemann's boundary problem with infinite index, Nauka, M., 1986, 239 pp. (in Russian) | MR
[2] Tolochko M. E., “About the solvability of the homogeneous Riemann boundary value program for the half-plane with infinite index”, Izv. AN BSSR. Ser. Fiz.-matem. nauki, 1969, no. 4, 52–59 (in Russian) | MR
[3] Sandrygailo I. E., “On Hilbert–Riemann boundary value program for the half-plane with infinite index”, Izv. AN BSSR. Ser. Fiz.-matem. nauki, 1974, no. 6, 872–875 | MR | MR
[4] Monahov V. N., Semenko E. V., “Boundary value problem with infinite index in Hardy spaces”, Dokl. Akad. Nauk USSR, 291:3 (1986), 544–547 (in Russian) | MR
[5] Salimov R. B., Shabalin P. L., Hilbert boundary value problem of the theory analytic functions and its applications, Kazan Math. Publ., Kazan, 2005, 297 pp. (in Russian)
[6] Salimov R. B., Shabalin P. L., “On solvability of homogeneous Riemann–Hilbert problem with a countable set of coefficients discontinuities and two-side curling at infinity of order less than 1/2”, Ufa Math. J., 5:2 (2013), 82–93 (in Russian) | MR
[7] Levin B. Ya., Distribution of zeros of entire functions, Gostekhizdat, M., 1956, 632 pp. (in Russian)