Solution of Cauchy problem for equation first order via Haar functions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 151-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider a Cauchy problem for the first order differential equation and are looking for its numerical solution. For this aim we represent the derivative of the solution as Haar decomposition. We also obtain estimates of approximate solution. The method is computationally simple and applications are demonstrated through illustrative examples. These examples show that in some cases the error of the proposed method is much less, than in second order Runge–Kutta method.
@article{ISU_2016_16_2_a4,
     author = {D. S. Lukomskii and S. F. Lukomskii and P. A. Terekhin},
     title = {Solution of {Cauchy} problem for equation first order via {Haar} functions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {151--159},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a4/}
}
TY  - JOUR
AU  - D. S. Lukomskii
AU  - S. F. Lukomskii
AU  - P. A. Terekhin
TI  - Solution of Cauchy problem for equation first order via Haar functions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 151
EP  - 159
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a4/
LA  - ru
ID  - ISU_2016_16_2_a4
ER  - 
%0 Journal Article
%A D. S. Lukomskii
%A S. F. Lukomskii
%A P. A. Terekhin
%T Solution of Cauchy problem for equation first order via Haar functions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 151-159
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a4/
%G ru
%F ISU_2016_16_2_a4
D. S. Lukomskii; S. F. Lukomskii; P. A. Terekhin. Solution of Cauchy problem for equation first order via Haar functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 151-159. http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a4/

[1] Ohkita M., Kobayashi Y., “An application of rationalized Haar functions to solution of linear differential equations”, IEEE Transactions on Circuit and Systems, 33:9 (1968), 853–862 | DOI

[2] Razzaghi M., Ordokhani Y., “Solution of differential equations via rationalized Haar functions”, Mathematics and computers in simulation, 56:3 (2001), 235–246 | DOI | MR | Zbl

[3] Razzaghi M., Ordokhani Y., “An application of rationalized Haar functions for variational problems”, Applied Mathematics and Computation, 122:3 (2001), 353–364 | DOI | MR | Zbl

[4] Lukomskii D. S., “Application of Haar system for solving the Cauchy problem”, Mathematics. Mechanics, 14, Saratov Univ. Press, Saratov, 2014, 47–50 (in Russian) | Zbl

[5] Lukomskii D. S., Terekhin P. A., “An error estimate for the Cauchy problem by using compression systems and shifts”, Proceedings of the Mathematical Centre named N. I. Lobachevsky, 51, Kazan Matnematical Society, Kazan, 2015, 295–297 (in Russian)