A mixed problem for a system of first order differential equations with continuous potential
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 145-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a mixed problem for a first order differential system with two independent variables and continuous potential when the initial condition is an arbitrary square summable vector-valued function. The corresponding spectral problem is the Dirac system. It sets the convergence almost everywhere of a formal decision, obtained by the Fourier method. It is shown that the sum of a formal decision is a generalized solution of a mixed problem, understood as the limit of classical solutions for the case of smooth approximation of the initial data of the problem.
@article{ISU_2016_16_2_a3,
     author = {M. Sh. Burlutskaya},
     title = {A mixed problem for a system of first order differential equations with continuous potential},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {145--151},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a3/}
}
TY  - JOUR
AU  - M. Sh. Burlutskaya
TI  - A mixed problem for a system of first order differential equations with continuous potential
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 145
EP  - 151
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a3/
LA  - ru
ID  - ISU_2016_16_2_a3
ER  - 
%0 Journal Article
%A M. Sh. Burlutskaya
%T A mixed problem for a system of first order differential equations with continuous potential
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 145-151
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a3/
%G ru
%F ISU_2016_16_2_a3
M. Sh. Burlutskaya. A mixed problem for a system of first order differential equations with continuous potential. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 145-151. http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a3/

[1] Vagabov A. I., Introduction to spectral theory of differential operators, Rostov Univ. Press, Rostov-on-Don, 1994, 160 pp. (in Russian)

[2] Djakov P., Mityagin B., “Instability zones of periodic 1-dimensional Schrodinger and Dirac operators”, Russian Math. Surveys, 61:4 (2006), 663–776 | DOI | DOI | MR | Zbl

[3] Djakov P., Mityagin B., “Bari–Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462 | DOI | MR | Zbl

[4] Baskakov A. G., Derbushev A. V., Shcherbakov A. O., “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | DOI | DOI | MR | MR | Zbl

[5] Savchuk A. M., Sadovnichaya I. V., “Asymptotic formulas for fundamental solutions of the Dirac system with complex-valued integrable potential”, Differ. Equations, 49:5 (2013), 545–556 | DOI | DOI | MR | Zbl

[6] Savchuk A. M., Shkalikov A. A., “Dirac operator with complex-valued summable potential”, Math. Notes, 96:5–6 (2014), 777–810 | DOI | MR | Zbl

[7] Burlutskaya M. Sh., Kurdyumov V. P., Khromov A. P., “Refined asymptotic formulas for eigenvalues and eigenfunctions of the Dirac system”, Doklady Math., 85:2 (2012), 240–242 | DOI | MR | Zbl

[8] Burlutskaia M. Sh., Kurdiumov V. P., Khromov A. P., “Refined Asymptotic Formulas for Eigenvalues and Eigenfunctions of the Dirac System with Nondifferentiable Potential”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 12:3 (2012), 22–30 (in Russian)

[9] Khromov A. P., “The behavior of the formal solution of the mixed problem for wave equation”, Comput. Math. Math. Phys., 56:2 (2016), 239–251 | DOI | MR | Zbl