Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_2_a3, author = {M. Sh. Burlutskaya}, title = {A mixed problem for a system of first order differential equations with continuous potential}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {145--151}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a3/} }
TY - JOUR AU - M. Sh. Burlutskaya TI - A mixed problem for a system of first order differential equations with continuous potential JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 145 EP - 151 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a3/ LA - ru ID - ISU_2016_16_2_a3 ER -
%0 Journal Article %A M. Sh. Burlutskaya %T A mixed problem for a system of first order differential equations with continuous potential %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 145-151 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a3/ %G ru %F ISU_2016_16_2_a3
M. Sh. Burlutskaya. A mixed problem for a system of first order differential equations with continuous potential. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 145-151. http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a3/
[1] Vagabov A. I., Introduction to spectral theory of differential operators, Rostov Univ. Press, Rostov-on-Don, 1994, 160 pp. (in Russian)
[2] Djakov P., Mityagin B., “Instability zones of periodic 1-dimensional Schrodinger and Dirac operators”, Russian Math. Surveys, 61:4 (2006), 663–776 | DOI | DOI | MR | Zbl
[3] Djakov P., Mityagin B., “Bari–Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462 | DOI | MR | Zbl
[4] Baskakov A. G., Derbushev A. V., Shcherbakov A. O., “The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials”, Izv. Math., 75:3 (2011), 445–469 | DOI | DOI | MR | MR | Zbl
[5] Savchuk A. M., Sadovnichaya I. V., “Asymptotic formulas for fundamental solutions of the Dirac system with complex-valued integrable potential”, Differ. Equations, 49:5 (2013), 545–556 | DOI | DOI | MR | Zbl
[6] Savchuk A. M., Shkalikov A. A., “Dirac operator with complex-valued summable potential”, Math. Notes, 96:5–6 (2014), 777–810 | DOI | MR | Zbl
[7] Burlutskaya M. Sh., Kurdyumov V. P., Khromov A. P., “Refined asymptotic formulas for eigenvalues and eigenfunctions of the Dirac system”, Doklady Math., 85:2 (2012), 240–242 | DOI | MR | Zbl
[8] Burlutskaia M. Sh., Kurdiumov V. P., Khromov A. P., “Refined Asymptotic Formulas for Eigenvalues and Eigenfunctions of the Dirac System with Nondifferentiable Potential”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 12:3 (2012), 22–30 (in Russian)
[9] Khromov A. P., “The behavior of the formal solution of the mixed problem for wave equation”, Comput. Math. Math. Phys., 56:2 (2016), 239–251 | DOI | MR | Zbl