The geometric form of automaton mappings, recurrent and $Z$-recurrent definition of sequences
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 232-241

Voir la notice de l'article provenant de la source Math-Net.Ru

For automaton mappings we present a method to construct geometric images, a method for complexity estimate by geometric forms, a method of $Z$-recurrent definition of sequences. A method for complexity estimate for finite sequences by recurrent and $Z$-recurrent numerical indicators is proposed. Numerical indicators of recurrent and $Z$-recurrent definitions of sequences are systematized into the spectrum of recurrent definitions with 5 levels of numerical indicators. The spectrum includes the order of a recurrent form, the numerical characteristics of various types of recurrent sequences, etc.
@article{ISU_2016_16_2_a14,
     author = {V. A. Tverdokhlebov},
     title = {The geometric form of automaton mappings, recurrent and $Z$-recurrent definition of sequences},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {232--241},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a14/}
}
TY  - JOUR
AU  - V. A. Tverdokhlebov
TI  - The geometric form of automaton mappings, recurrent and $Z$-recurrent definition of sequences
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 232
EP  - 241
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a14/
LA  - ru
ID  - ISU_2016_16_2_a14
ER  - 
%0 Journal Article
%A V. A. Tverdokhlebov
%T The geometric form of automaton mappings, recurrent and $Z$-recurrent definition of sequences
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 232-241
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a14/
%G ru
%F ISU_2016_16_2_a14
V. A. Tverdokhlebov. The geometric form of automaton mappings, recurrent and $Z$-recurrent definition of sequences. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 232-241. http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a14/