On applications of wavelets in digital signal processing
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 217-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete Wavelet transform associated with the Walsh functions was defined by Lang in 1998. The article describes an application of Lang's transform and some its modifications in analysis of financial time series and for the compression of fractal data. It is shown that for the processing of certain signals the studied discrete wavelet transform has advantages over the discrete transforms Haar, Daubechies and the method of zone coding.
@article{ISU_2016_16_2_a12,
     author = {E. A. Rodionov},
     title = {On applications of wavelets in digital signal processing},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {217--225},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a12/}
}
TY  - JOUR
AU  - E. A. Rodionov
TI  - On applications of wavelets in digital signal processing
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 217
EP  - 225
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a12/
LA  - ru
ID  - ISU_2016_16_2_a12
ER  - 
%0 Journal Article
%A E. A. Rodionov
%T On applications of wavelets in digital signal processing
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 217-225
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a12/
%G ru
%F ISU_2016_16_2_a12
E. A. Rodionov. On applications of wavelets in digital signal processing. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 217-225. http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a12/

[1] Koronovskii A. A., Khramov A. E., Continuous wavelet analysis and its applications, Fizmatlit, M., 2003, 176 pp. (in Russian)

[2] Percival D., Walden A., Wavelet Methods for Time Series Analysis, Cambridge University Press, Cambridge, 2000, 611 pp. | MR | Zbl

[3] Mallat S., A Wavelet Tour of Signal Processing the Sparse Way, 3rd. edition, Elsevier Inc., Burlington, 2008, 620 pp. | MR

[4] Golubov B. I., Efimov A. V., Skvortsov V. A., Walsh Series and Transforms: Theory and Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 368 | MR | Zbl

[5] Zalmanzon L. A., Fourier, Walsh and Haar transforms and its application in management, communication and in other areas, Nauka, M., 1989, 496 pp. (in Russian)

[6] Lang W. C., “Fractal multiwavelets related to the Cantor dyadic group”, Intern. J. Math. and Math. Sci., 21 (1998), 307–317 | DOI | MR

[7] Farkov Yu. A., Maksimov A. Yu., Stroganov S. A., “On biorthogonal wavelets related to the Walsh functions”, Intern. J. Wavelets Multiresolut. Inf. Process, 9 (2011), 485–499 | DOI | MR | Zbl

[8] Farkov Yu. A., Rodionov E. A., “On biorthogonal discrete wavelet bases”, Intern. J. Wavelets Multiresolut. Inf. Process, 13:1 (2015), 1550002, 18 pp. | DOI | MR | Zbl

[9] Welstead S., Fractal and Wavelet Image Compression Techniques, SPIE Press, Bellingham, Wash, 2003, 259 pp.

[10] Farkov Yu. A., Rodionov E. A., “Nonstationary wavelets related to the Walsh functions”, American J. Comput. Math., 2:2 (2012), 82–87 | DOI

[11] Farkov Yu. A., “Periodic wavelets in Walsh analysis”, Communic. Math. Appl., 3:3 (2012), 223–242 | MR

[12] Farkov Yu. A., Borisov M. E., “Periodic dyadic wavelets in coding of fractal functions”, Russian Math. (Iz. VUZ), 9:56 (2012), 46–56 | DOI | MR | Zbl

[13] Lyubushin A. A., “Seismic catastrophe in Japan on March 11, 2011: Long-term prediction on the basis of low-frequency microseisms”, Izvestiya, Atmospheric and Oceanic Physics, 47:8 (2011), 904–921 | DOI

[14] Stroganov S. A., “Smoothness estimates of low-frequency microseisms using dyadic wavelets”, Geophysical Research, 13:1 (2012), 17–22 (in Russian) | Zbl

[15] Lyubushin A. A., Jakovlev P. V., Rodionov E. A., “Multiple analysis of GPS signal fluctuation parameters before and after the megaearthquake in Japan on 11 March 2011”, Geophysical Research, 16:1 (2015), 14–23 (in Russian)

[16] Lyubushin A. A., Data analysis systems for geophysical and environmental monitoring, Nauka, M., 2007, 228 pp. (in Russian)

[17] Farkov Yu. A., “Constructions of MRA-based wavelets and frames in Walsh analysis”, IWWFA-II (Delhi, 2015), Poincare J. Anal. Appl., 2, 2015, 13–36 | MR

[18] Farkov Yu. A., “Discrete wavelets and the Vilenkin–Chrestenson transform”, Math. Notes, 89:6 (2011), 914–928 | DOI | MR | Zbl

[19] Farkov Yu. A., Rodionov E. A., “Algorithms for Wavelet Construction on Vilenkin Groups”, $p$-Adic Numb. Ultr. Anal. Appl., 3:3 (2011), 181–195 | DOI | MR | Zbl

[20] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Wavelet Theory, Translations Mathematical Monographs, 239, AMS, 2011, 506 pp. | MR | Zbl

[21] Farkov Yu. A., Lebedeva E. A., Skopina M. A., “Wavelet frames on Vilenkin groups and their approximation properties”, Intern. J. Wavelets Multiresolut. Inf. Process, 13:5 (2015), 1550036, 19 pp. | DOI | MR | Zbl

[22] Protasov V. Yu., Farkov Yu. A., “Dyadic wavelets and refinable functions on a half-line”, Sb. Math., 197:10 (2006), 1529–1558 | DOI | DOI | MR | Zbl

[23] Burnaev E. V., Olenev N. N., “Proximity measures of the wavelet coefficients for comparison of statistical and computational time series”, Mezhvuz. sb. nauch. i nauch.-metod. tr. za 2015 g., 10, Izd-vo VyatGU, Kirov, 2006, 41–51 (in Russian) | Zbl

[24] Rodionov E. A., “On applications of wavelets to analisys of time series”, Contemporary Problems of Function Theory and Their Applications, Proc. 18th Intern. Saratov Winter School, Izd-vo “Nauchnaia kniga”, Saratov, 2016, 232–234 (in Russian)

[25] Sendov Bl., “Adapted multiresolution analysis”, Functions, series, operators (Budapest, 1999), eds. L. Leinder, F. Schipp, J. Szabados, Janos Bolyai Math. Soc., Budapest, 2002, 23–38 | MR | Zbl

[26] Farkov Yu. A., “Multiresolution analysis and wavelets on Vilenkin groups”, Facta Univ. (Niš), Ser.: Elec. Energ., 21:3 (2008), 309–325 | DOI