Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_2_a12, author = {E. A. Rodionov}, title = {On applications of wavelets in digital signal processing}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {217--225}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a12/} }
TY - JOUR AU - E. A. Rodionov TI - On applications of wavelets in digital signal processing JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 217 EP - 225 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a12/ LA - ru ID - ISU_2016_16_2_a12 ER -
E. A. Rodionov. On applications of wavelets in digital signal processing. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 217-225. http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a12/
[1] Koronovskii A. A., Khramov A. E., Continuous wavelet analysis and its applications, Fizmatlit, M., 2003, 176 pp. (in Russian)
[2] Percival D., Walden A., Wavelet Methods for Time Series Analysis, Cambridge University Press, Cambridge, 2000, 611 pp. | MR | Zbl
[3] Mallat S., A Wavelet Tour of Signal Processing the Sparse Way, 3rd. edition, Elsevier Inc., Burlington, 2008, 620 pp. | MR
[4] Golubov B. I., Efimov A. V., Skvortsov V. A., Walsh Series and Transforms: Theory and Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 368 | MR | Zbl
[5] Zalmanzon L. A., Fourier, Walsh and Haar transforms and its application in management, communication and in other areas, Nauka, M., 1989, 496 pp. (in Russian)
[6] Lang W. C., “Fractal multiwavelets related to the Cantor dyadic group”, Intern. J. Math. and Math. Sci., 21 (1998), 307–317 | DOI | MR
[7] Farkov Yu. A., Maksimov A. Yu., Stroganov S. A., “On biorthogonal wavelets related to the Walsh functions”, Intern. J. Wavelets Multiresolut. Inf. Process, 9 (2011), 485–499 | DOI | MR | Zbl
[8] Farkov Yu. A., Rodionov E. A., “On biorthogonal discrete wavelet bases”, Intern. J. Wavelets Multiresolut. Inf. Process, 13:1 (2015), 1550002, 18 pp. | DOI | MR | Zbl
[9] Welstead S., Fractal and Wavelet Image Compression Techniques, SPIE Press, Bellingham, Wash, 2003, 259 pp.
[10] Farkov Yu. A., Rodionov E. A., “Nonstationary wavelets related to the Walsh functions”, American J. Comput. Math., 2:2 (2012), 82–87 | DOI
[11] Farkov Yu. A., “Periodic wavelets in Walsh analysis”, Communic. Math. Appl., 3:3 (2012), 223–242 | MR
[12] Farkov Yu. A., Borisov M. E., “Periodic dyadic wavelets in coding of fractal functions”, Russian Math. (Iz. VUZ), 9:56 (2012), 46–56 | DOI | MR | Zbl
[13] Lyubushin A. A., “Seismic catastrophe in Japan on March 11, 2011: Long-term prediction on the basis of low-frequency microseisms”, Izvestiya, Atmospheric and Oceanic Physics, 47:8 (2011), 904–921 | DOI
[14] Stroganov S. A., “Smoothness estimates of low-frequency microseisms using dyadic wavelets”, Geophysical Research, 13:1 (2012), 17–22 (in Russian) | Zbl
[15] Lyubushin A. A., Jakovlev P. V., Rodionov E. A., “Multiple analysis of GPS signal fluctuation parameters before and after the megaearthquake in Japan on 11 March 2011”, Geophysical Research, 16:1 (2015), 14–23 (in Russian)
[16] Lyubushin A. A., Data analysis systems for geophysical and environmental monitoring, Nauka, M., 2007, 228 pp. (in Russian)
[17] Farkov Yu. A., “Constructions of MRA-based wavelets and frames in Walsh analysis”, IWWFA-II (Delhi, 2015), Poincare J. Anal. Appl., 2, 2015, 13–36 | MR
[18] Farkov Yu. A., “Discrete wavelets and the Vilenkin–Chrestenson transform”, Math. Notes, 89:6 (2011), 914–928 | DOI | MR | Zbl
[19] Farkov Yu. A., Rodionov E. A., “Algorithms for Wavelet Construction on Vilenkin Groups”, $p$-Adic Numb. Ultr. Anal. Appl., 3:3 (2011), 181–195 | DOI | MR | Zbl
[20] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Wavelet Theory, Translations Mathematical Monographs, 239, AMS, 2011, 506 pp. | MR | Zbl
[21] Farkov Yu. A., Lebedeva E. A., Skopina M. A., “Wavelet frames on Vilenkin groups and their approximation properties”, Intern. J. Wavelets Multiresolut. Inf. Process, 13:5 (2015), 1550036, 19 pp. | DOI | MR | Zbl
[22] Protasov V. Yu., Farkov Yu. A., “Dyadic wavelets and refinable functions on a half-line”, Sb. Math., 197:10 (2006), 1529–1558 | DOI | DOI | MR | Zbl
[23] Burnaev E. V., Olenev N. N., “Proximity measures of the wavelet coefficients for comparison of statistical and computational time series”, Mezhvuz. sb. nauch. i nauch.-metod. tr. za 2015 g., 10, Izd-vo VyatGU, Kirov, 2006, 41–51 (in Russian) | Zbl
[24] Rodionov E. A., “On applications of wavelets to analisys of time series”, Contemporary Problems of Function Theory and Their Applications, Proc. 18th Intern. Saratov Winter School, Izd-vo “Nauchnaia kniga”, Saratov, 2016, 232–234 (in Russian)
[25] Sendov Bl., “Adapted multiresolution analysis”, Functions, series, operators (Budapest, 1999), eds. L. Leinder, F. Schipp, J. Szabados, Janos Bolyai Math. Soc., Budapest, 2002, 23–38 | MR | Zbl
[26] Farkov Yu. A., “Multiresolution analysis and wavelets on Vilenkin groups”, Facta Univ. (Niš), Ser.: Elec. Energ., 21:3 (2008), 309–325 | DOI