Analyticity conditions of characteristic and disturbing quasipolynomials of hybrid dynamical systems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 208-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hybrid dynamical systems (HDS) are connected by means of the boundary conditions and the constraint's conditions systems of ordinary differential equations and partial differential equations with the corresponding initial conditions. Check the stability of HDS can be performed on the basis of the "fast" algorithm for the application which requires analytic characteristic and disturbing quasipolynomials of HDS in the right half-plane and near the imaginary axis. In this paper we formulate and prove the analyticity conditions of the characteristic and disturbing HDS quasipolynomials. Mathematical models of control objects with distributed parameters in space, matching the thermal conductivity and diffusion processes, the dynamics of support layers of viscous incompressible fluid, as well as the dynamics of the elastically deformable medium taking into account the internal friction.
@article{ISU_2016_16_2_a11,
     author = {M. S. Portenko and D. V. Melnichuk and D. K. Andreichenko},
     title = {Analyticity conditions of characteristic and disturbing quasipolynomials of hybrid dynamical systems},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {208--217},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a11/}
}
TY  - JOUR
AU  - M. S. Portenko
AU  - D. V. Melnichuk
AU  - D. K. Andreichenko
TI  - Analyticity conditions of characteristic and disturbing quasipolynomials of hybrid dynamical systems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 208
EP  - 217
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a11/
LA  - ru
ID  - ISU_2016_16_2_a11
ER  - 
%0 Journal Article
%A M. S. Portenko
%A D. V. Melnichuk
%A D. K. Andreichenko
%T Analyticity conditions of characteristic and disturbing quasipolynomials of hybrid dynamical systems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 208-217
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a11/
%G ru
%F ISU_2016_16_2_a11
M. S. Portenko; D. V. Melnichuk; D. K. Andreichenko. Analyticity conditions of characteristic and disturbing quasipolynomials of hybrid dynamical systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 208-217. http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a11/

[1] Andreichenko D. K., Andreichenko K. P., “On the theory of hybrid dynamical systems”, Journal of Computer and Systems Sciences International, 39:3 (2000), 383–398

[2] Andreichenko D. K., Andreichenko K. P., Modeling, analysis and synthesis of combined dynamical systems, Tutorial, Rait-Ekspo, Saratov, 2013, 144 pp. (in Russian)

[3] Liusternik L. A., Sobolev V. I., A short course of functional analysis, Vysshaia shkola, M., 1982, 271 pp. (in Russian) | MR

[4] Andreichenko D. K., Andreichenko K. P., “On the theory of stability of a cylindrical hydrodynamic suspension”, Fluid Dynamics, 44:1 (2009), 10–21 | DOI | MR

[5] Andreichenko D. K., Eroftiev A. A., Melnichuk D. V., “Parallelization of parametric synthesis by “problems portfolio” scheme based on MPI technology”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:2 (2015), 222–228 (in Russian) | DOI

[6] Andreichenko D. K., Andreichenko K. P., Kononov V. V., “On stability theory of autonomous angular stabilization system for combined dynamical systems”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 13:2/2 (2013), 9–14 (in Russian) | MR

[7] Andreichenko D. K., Andreichenko K. P., Kononov V. V., “Parallel algorithm of optimal parameters calculation for the single channel angular stabilization system”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 13:4/1 (2013), 109–117 (in Russian)