Solving kinematic problem of optimal nonlinear stabilization of arbitrary program movement of free rigid body
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 198-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

The kinematic problem of nonlinear stabilization of arbitrary program motion of free rigid body is studied. Biquaternion kinematic equation of perturbed motion of a free rigid body is considered as a mathematical model of motion. Instant speed screw of body motion is considered as a control. There are two functionals that are to be minimized. Both of them characterize the integral quantity of energy costs of control and squared deviations of motion parameters of a free rigid body from their program values. Optimal control laws and differential equations of optimization problem are determined using the Pontryagin's maximum principle. Analytical solution of this problem has been found. The control law obtained is used for numerical solution of the inverse kinematics of a Stanford robot arm. The analysis of the numerical solution is carried out.
@article{ISU_2016_16_2_a10,
     author = {Yu. N. Chelnokov and E. I. Nelaeva},
     title = {Solving kinematic problem of optimal nonlinear stabilization of arbitrary program movement of free rigid body},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {198--207},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a10/}
}
TY  - JOUR
AU  - Yu. N. Chelnokov
AU  - E. I. Nelaeva
TI  - Solving kinematic problem of optimal nonlinear stabilization of arbitrary program movement of free rigid body
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 198
EP  - 207
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a10/
LA  - ru
ID  - ISU_2016_16_2_a10
ER  - 
%0 Journal Article
%A Yu. N. Chelnokov
%A E. I. Nelaeva
%T Solving kinematic problem of optimal nonlinear stabilization of arbitrary program movement of free rigid body
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 198-207
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a10/
%G ru
%F ISU_2016_16_2_a10
Yu. N. Chelnokov; E. I. Nelaeva. Solving kinematic problem of optimal nonlinear stabilization of arbitrary program movement of free rigid body. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 198-207. http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a10/

[1] Branec V. N., Shmyglevskij I. P., “Using Biquaternions in Problem of Rigid Body Position Control”, Izv. AN SSSR. MTT, 1972, no. 4, 24–31 (in Russian)

[2] Branec V. N., Shmyglevskij I. P., “Kinematic Problem of Orientation in Rotating Coordinate Frame”, Izv. AN SSSR. MTT, 1972, no. 6, 36–43 (in Russian)

[3] Branec V. N., Shmyglevskij I. P., Using Biquaternions in Problem of Rigid Body Orientation, Nauka, M., 1973, 320 pp. (in Russian) | MR

[4] Plotnikov P. K., Sergeev A. N., Chelnokov Yu. N., “Kinematic control problem for the orientation of a rigid body”, Mech. Solids, 37:5 (1991), 7–16 | MR

[5] Pankov A. A., Chelnokov Yu. N., “Investigation of quaternion laws of kinematic control of solid body orientation in angular velocity”, Mech. Solids, 1995, no. 6, 3–13

[6] Branec V. N., Shmyglevskij I. P., Introduction to the Theory of Strapdown Inertial Navigation Systems, Nauka, M., 1992, 280 pp. (in Russian)

[7] Molodenkov A. V., “Quaternion Solution of the Problem of Optimal Rotation of a Rigid Body With a Spherical Mass Distribution”, Problemy mehaniki i upravlenija, Mezhvuz. sb. nauch. tr., Perm Univ. Press, Perm', 1995, 122–131 pp. (in Russian)

[8] Birjukov V. G., Chelnokov Ju. N., “Kinematic Problem of Optimal Nonlinear Stabilization of Rigid Body Angular Motion”, Mathematics. Mechanics, 4, Saratov Univ. Press, Saratov, 2002, 172–174 (in Russian)

[9] Malanin V. V., Strelkova N. A., Optimal Control of Rigid Body Orientation and Screw Motion, NIC “Reguljarnaja i haoticheskaja dinamika”, M.–Izhevsk, 2004, 204 pp. (in Russian)

[10] Chelnokov Yu. N., Quaternion and Biquaternion Models and Methods of Mechanics of Solid Bodies and its Applications. Geometry and Kinematics of Motion, Fizmatlit, M., 2006, 511 pp. (in Russian)

[11] Strelkova N. A., “Time Optimal Kinematic Control of Rigid Body Screw Motion”, Izv. AN SSSR. MTT, 1982, no. 4, 73–76 (in Russian)

[12] Chelnokov Yu. N., “On integration of kinematic equations of a rigid body's screw-motion”, Applied mathematics and mechanics, 44:1 (1980), 19–23 | DOI | MR | Zbl

[13] Chelnokov Yu. N., “Biquaternion Solution of the Kinematic Control Problem for the Motion of a Rigid Body and Its Application to the Solution of Inverse Problems of Robot-Manipulator Kinematics”, Mech. Solids, 48:1 (2013), 31–46 | DOI | MR | MR

[14] Lomovceva E. I., Chelnokov Ju. N., “Dual matrix and biquaternion methods of solving direct and inverse kinematics problems of manipulators for example Stanford robot arm. II”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:1 (2014), 88–95

[15] Nelaeva E. I., Chelnokov Ju. N., “Solution to the Problems of Direct and Inverse Kinematics of the Robots-Manipulators Using Dual Matrices and Biquaternions on the Example of Stanford Robot Arm. Pt. 1”, Mekhatronika, Avtomatizatsiya, Upravlenie, 16:6 (2015), 373–380 (in Russian) | DOI