Mazur spaces and 4.3-intersection property of $(BM)$-spaces
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 133-137

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper puts forward some combinatorial and geometric properties of finite-dimensional $(BM)$-spaces. A remarkable property of such spaces is that in these spaces one succeeds in giving an answer to some long-standing problems of geometric approximation theory, and in particular, to the question on the existence of continuous $\varepsilon$-selections on suns (Kolmogorov sets) for all $\varepsilon>0$. A finite-dimensional polyhedral $(BM)$-space is shown to be a Mazur space, satisfies the 4.3-intersection property, and its unit ball is proved to be a generating set (in the sense of Polovinkin, Balashov, and Ivanov).
@article{ISU_2016_16_2_a1,
     author = {A. R. Alimov},
     title = {Mazur spaces and 4.3-intersection property of $(BM)$-spaces},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {133--137},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a1/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Mazur spaces and 4.3-intersection property of $(BM)$-spaces
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 133
EP  - 137
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a1/
LA  - ru
ID  - ISU_2016_16_2_a1
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Mazur spaces and 4.3-intersection property of $(BM)$-spaces
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 133-137
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a1/
%G ru
%F ISU_2016_16_2_a1
A. R. Alimov. Mazur spaces and 4.3-intersection property of $(BM)$-spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 133-137. http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a1/