Mazur spaces and 4.3-intersection property of $(BM)$-spaces
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 133-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper puts forward some combinatorial and geometric properties of finite-dimensional $(BM)$-spaces. A remarkable property of such spaces is that in these spaces one succeeds in giving an answer to some long-standing problems of geometric approximation theory, and in particular, to the question on the existence of continuous $\varepsilon$-selections on suns (Kolmogorov sets) for all $\varepsilon>0$. A finite-dimensional polyhedral $(BM)$-space is shown to be a Mazur space, satisfies the 4.3-intersection property, and its unit ball is proved to be a generating set (in the sense of Polovinkin, Balashov, and Ivanov).
@article{ISU_2016_16_2_a1,
     author = {A. R. Alimov},
     title = {Mazur spaces and 4.3-intersection property of $(BM)$-spaces},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {133--137},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a1/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Mazur spaces and 4.3-intersection property of $(BM)$-spaces
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 133
EP  - 137
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a1/
LA  - ru
ID  - ISU_2016_16_2_a1
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Mazur spaces and 4.3-intersection property of $(BM)$-spaces
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 133-137
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a1/
%G ru
%F ISU_2016_16_2_a1
A. R. Alimov. Mazur spaces and 4.3-intersection property of $(BM)$-spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 133-137. http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a1/

[1] Brown A. L., “Suns in normed linear spaces which are finite-dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl

[2] Alimov A. R., Tsar'kov I. G., “Connectedness and other geometric properties of suns and Chebyshev sets”, Fund. prikl. matem., 19:4 (2014), 21–91 (in Russian) | MR

[3] Brown A. L., “Suns in polyhedral spaces”, Seminar of Math. Analysis. Proceedings (Univ. Malaga and Seville (Spain), Sept. 2002 – Febr. 2003), eds. D. G. Álvarez, G. Lopez Acedo, R. V. Caro, Universidad de Sevilla, Sevilla, 2003, 139–146 | MR | Zbl

[4] Bednov B. B., Borodin P. A., “Banach spaces that realize minimal fillings”, Sb. Math., 205:4 (2014), 3–20 | DOI | DOI | MR

[5] Hansen A. B., Lima Å., “The structure of finite dimensional Banach spaces with the 3.2. intersection property”, Acta Math., 146 (1981), 1–23 | DOI | MR | Zbl

[6] Boltyanskii V. G., Soltan P. S., “Combinatorial geometry and convexity classes”, Russian Math. Surveys, 33:1(199) (1978), 1–45 | DOI | DOI | MR

[7] Boltyanski V., Martini H., Soltan P. S., Excursions into combinatorial geometry, Springer, Berlin, 1997, 422 pp. | DOI | MR | Zbl

[8] Granero A. S., Moreno J. P., Phelps R. R., “Mazur sets in normed spaces”, Discrete Comput Geom., 31 (2004), 411–420 | DOI | MR | Zbl

[9] Moreno J. P., Schneider R., “Intersection properties of polyhedral norms”, Adv. Geom., 7:3 (2007), 391–402 | DOI | MR | Zbl

[10] Balashov M. V., Polovinkin E. S., “$M$-strongly convex subsets and their generating sets”, Sb. Math., 191:1 (2000), 26–64 | DOI | DOI | MR

[11] Ivanov G. E., “A criterion of smooth generating sets”, Sb. Math., 198:3 (2007), 343–368 | DOI | DOI | MR | Zbl

[12] Balashov M. V., Ivanov G. E., “Weakly convex and proximally smooth sets in Banach spaces”, Izv. Math., 73:3 (2009), 455–499 | DOI | DOI | MR | Zbl

[13] Schneider R., Convex bodies: The Brunn–Minkowski theory, Cambridge Univ. Press, Cambridge, 1993 | DOI | MR | Zbl