Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_2_a0, author = {S. A. Aldashev}, title = {Well-posedness of the {Dirichlet} problem for a class of multidimensional elliptic-parabolic equations}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {125--132}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a0/} }
TY - JOUR AU - S. A. Aldashev TI - Well-posedness of the Dirichlet problem for a class of multidimensional elliptic-parabolic equations JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 125 EP - 132 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a0/ LA - ru ID - ISU_2016_16_2_a0 ER -
%0 Journal Article %A S. A. Aldashev %T Well-posedness of the Dirichlet problem for a class of multidimensional elliptic-parabolic equations %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 125-132 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a0/ %G ru %F ISU_2016_16_2_a0
S. A. Aldashev. Well-posedness of the Dirichlet problem for a class of multidimensional elliptic-parabolic equations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 2, pp. 125-132. http://geodesic.mathdoc.fr/item/ISU_2016_16_2_a0/
[1] Fikera G., “The unified theory of boundary value problems for elltptlc-parabolic equations of second order”, Sbornik perevodov. Matematika, 7:6 (1963), 99–121 (in Russian)
[2] Oleinik O. A., Radkevich E. V., Equations with nonnegativo characteristic form, Moscow Univ. Press, M., 2010, 360 pp. (in Russian)
[3] Aldashev S. A., “The correctness of the Dirichlet problem in the cylindric domain for the multidimensional elliptic-parabolic equation”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:1 (2014), 5–10 (in Russian)
[4] Aldashev S. A., “Correctness of Dirichlet's Problem in a Cylindric Domain for a Single Class of Many-dimensional Elliptic Equations”, Vestn. Novosib. Gos. Univ., Ser. Matem., Mekh., Inform., 12:1 (2012), 7–13 (in Russian) | MR
[5] Mikhlin S. G., Multidimensional Singular Integrals and Integral Equations, Pergamon, New York, 1965 | MR | MR | Zbl
[6] Aldashev S. A., Boundary-Value Problems for Multi-Dimensional Hyperbolic and Mixed Equations, Gylym Press, Almaty, Kazakhstan, 1994, 170 pp. (in Russian)
[7] Aldashev S. A., “On Darboux problems for a class of multidimensional hyperbolic equations”, Differentsialnye Uravneniya, 34:1 (1998), 64–68 (in Russian) | MR
[8] Aldashev S. A., Degenerate multidimensional hyperbolic equation, ZKATU, Oral, 2007, 139 pp. (in Russian)
[9] Kamke E., Handbook on Ordinary Differential Equations, Nauka, M., 1965, 703 pp. (in Russian) | MR
[10] Beitmen G., Erdeii A., Higher Transcendental Functions, v. 2, Nauka, M., 1974, 297 pp. (in Russian)
[11] Kolmogorov A., Fomin S., Elements of the Theory of Functions and Functional Analysis, Dover Publications, Mineola, NY, USA, 1999 | MR
[12] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Nauka, M., 1966, 724 pp. (in Russian) | MR
[13] Smirnov V. I., The higher mathematics course, pt. 2, v. 4, Nauka, M., 1981, 550 pp. (in Russian)
[14] Friedman A., Partial differential Equations of parabolic type, Mir, M., 1968, 527 pp. (in Russian)
[15] Bers L., John F., Schechter M., Partial differential equations, Mir, M., 1966, 352 pp. (in Russian) | MR