Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_1_a3, author = {M. S. Sultanakhmedov}, title = {Special wavelets based on {Chebyshev} polynomials of the second kind and their approximative properties}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {34--41}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a3/} }
TY - JOUR AU - M. S. Sultanakhmedov TI - Special wavelets based on Chebyshev polynomials of the second kind and their approximative properties JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 34 EP - 41 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a3/ LA - ru ID - ISU_2016_16_1_a3 ER -
%0 Journal Article %A M. S. Sultanakhmedov %T Special wavelets based on Chebyshev polynomials of the second kind and their approximative properties %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 34-41 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a3/ %G ru %F ISU_2016_16_1_a3
M. S. Sultanakhmedov. Special wavelets based on Chebyshev polynomials of the second kind and their approximative properties. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 1, pp. 34-41. http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a3/
[1] Meyer Y., Ondelettes et Operateurs, v. I–III, Hermann, Paris, 1990 | MR
[2] Daubechies L., Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics Proceedings, 61, SIAM, Philadelphia, PA, 1992, 357 pp. | DOI | MR | Zbl
[3] Chui C. K., An Introduction to Wavelets, Academic Press, Boston, 1992, 271 pp. | MR | Zbl
[4] Chui C. K., Mhaskar H. N., “On Trigonometric Wavelets”, Constructive Approximation, 9:2–3 (1993), 167–190 | DOI | MR | Zbl
[5] Kilgore T., Prestin J., “Polynomial wavelets on an interval”, Constructive Approximation, 12:1 (1996), 95–110 | DOI | MR | Zbl
[6] Fischer B., Prestin J., “Wavelet based on orthogonal polynomials”, Mathematics of computation, 66:220 (1997), 1593–1618 | DOI | MR | Zbl
[7] Fischer B., Themistoclakis W., “Orthogonal polynomial wavelets”, Numerical Algorithms, 30:1 (2002), 37–58 | DOI | MR | Zbl
[8] Capobiancho M. R., Themistoclakis W., “Interpolating polynomial wavelet on $[-1,1]$”, Advanced in Computational Mathematics, 23:4 (2005), 353–374 | DOI | MR
[9] Dao-Qing Dai, Wei Lin, “Orthonormal polynomial wavelets on the interval”, Proc. Amer. Math. Soc., 134:5 (2005), 1383–1390 | DOI | MR
[10] Mohd F., Mohd I., “Orthogonal Functions Based on Chebyshev Polynomials”, Matematika, 27:1 (2011), 97–107 | MR
[11] Sultanakhmedov M. S., “Approximative properties of the Chebyshev wavelet series of the second kind”, Vladikavkazskij matematicheskij zhurnal, 17:3 (2015), 56–64 (in Russian)
[12] Sharapudinov I. I., “Limit ultraspherical series and their approximative properties”, Math. Notes, 94:2 (2013), 281–293 | DOI | DOI | MR | MR | Zbl
[13] Sharapudinov I. I., “Some special series in ultraspherical polynomials and their approximative properties”, Izv. Math., 78:5 (2014), 1036–1059 | DOI | DOI | MR | Zbl
[14] Yakhnin B. M., “Lebesgue functions for expansions in series of Jacobi polynomials for the cases $\alpha=\beta=\frac12$, $\alpha=\beta=-\frac12$, $\alpha=\frac12$, $\beta=-\frac12$”, Uspekhi Mat. Nauk, 13:6(84) (1958), 207–211 (in Russian) | MR | Zbl
[15] Yakhnin B. M., “Approximation of functions of class Lip $\alpha $ by partial sums of a Fourier series in Chebyshev polynomials of second kind”, Izv. Vyssh. Uchebn. Zaved. Mat., 1963, no. 1, 172–178 (in Russian) | MR | Zbl
[16] Szegö G., Orthogonal Polynomials, Colloquium Publications, 23, Amer. Math. Soc., 1939, 432 pp. | MR | Zbl
[17] Timan A. F., Theory of approximation of functions of a real variable, Fizmatgiz, M., 1960, 626 pp. (in Russian)
[18] Sharapudinov I. I., “Best approximation and the Fourier–Jacobi sums”, Math. Notes, 34:5 (1983), 816–821 | DOI | MR | Zbl | Zbl