Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_1_a1, author = {A. P. Gurevich and V. P. Kurdyumov and A. P. Khromov}, title = {Justification of {Fourier} method in a mixed problem for wave equation with non-zero velocity}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {13--29}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a1/} }
TY - JOUR AU - A. P. Gurevich AU - V. P. Kurdyumov AU - A. P. Khromov TI - Justification of Fourier method in a mixed problem for wave equation with non-zero velocity JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 13 EP - 29 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a1/ LA - ru ID - ISU_2016_16_1_a1 ER -
%0 Journal Article %A A. P. Gurevich %A V. P. Kurdyumov %A A. P. Khromov %T Justification of Fourier method in a mixed problem for wave equation with non-zero velocity %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 13-29 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a1/ %G ru %F ISU_2016_16_1_a1
A. P. Gurevich; V. P. Kurdyumov; A. P. Khromov. Justification of Fourier method in a mixed problem for wave equation with non-zero velocity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 1, pp. 13-29. http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a1/
[1] Steklov V. A., The main tasks of mathematical physics, Nauka, M., 1983, 432 pp. (in Russian)
[2] Krylov A. N., On some differential equations of mathematical physics with applications in technical matters, GITTL, L., 1950, 368 pp. (in Russian)
[3] Chernyatin V. A., Justification of the Fourier method in a mixed problem for partial differential equations, Moscow Univ. Press, M., 1991, 112 pp. (in Russian)
[4] Burlutskaya M. Sh., Khromov A. P., “The resolvent approach for the wave equation”, Comput. Math. Math. Phys., 55:2 (2015), 227–239 | DOI | DOI | MR | Zbl
[5] Kornev V. V., Khromov A. P., “Resolvent approach to the Fourier method in a mixed problem for the wave equation”, Comput. Math. Math. Phys., 55:4 (2015), 618–627 | DOI | DOI | MR | Zbl
[6] Kornev V. V., Khromov A. P., “A resolvent approach in the Fourier method for the wave equation: The non-selfadjoint case”, Comput. Math. Math. Phys., 55:7 (2015), 1138–1149 | DOI | DOI | MR | Zbl
[7] Burlutskaya M. Sh., Khromov A. P., “Initial-boundary value problems for first-order hyperbolic equations with involution”, Doklady Math., 84:3 (2011), 783–786 | DOI | MR | Zbl
[8] Kamke E., Handbook of Ordinary Differential Equations, Nauka, M., 1971, 538 pp. (in Russian) | MR
[9] Naimark M. A., Linear Differential Operators, Ungar, New York, 1967 | MR | Zbl
[10] Rasulov M. L., The method of the contour integral, Nauka, M., 1964, 462 pp. (in Russian) | MR
[11] Vagabov A. I., Introduction to the spectral theory of differential operators, Rostov Univ. Press, Rostov-on-Don, 1994, 106 pp. (in Russian)
[12] Marchenko V. A., Sturm–Liouville Operators and Applications, Naukova Dumka, Kiev, 1977, 332 pp. (in Russian) | MR