Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_4_a7, author = {O. V. Sherstyukova}, title = {On the least type of entire functions of order $\rho\in(0,1)$ with positive zeros}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {433--441}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a7/} }
TY - JOUR AU - O. V. Sherstyukova TI - On the least type of entire functions of order $\rho\in(0,1)$ with positive zeros JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 433 EP - 441 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a7/ LA - ru ID - ISU_2015_15_4_a7 ER -
%0 Journal Article %A O. V. Sherstyukova %T On the least type of entire functions of order $\rho\in(0,1)$ with positive zeros %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 433-441 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a7/ %G ru %F ISU_2015_15_4_a7
O. V. Sherstyukova. On the least type of entire functions of order $\rho\in(0,1)$ with positive zeros. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 433-441. http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a7/
[1] Popov A. Yu., “The least possible type under the order $\rho1$ of canonical products with positive zeros of a given upper $\rho$-density”, Moscow Univ. Math. Bull., 60:1 (2005), 32–36 | MR | Zbl
[2] Popov A. Yu., “On the least type of an entire function of order $\rho$ with roots of a given upper $\rho$-density lying on one ray”, Math. Notes, 85:1–2 (2009), 226–239 | DOI | DOI | MR | Zbl
[3] Braichev G. G., Sherstyukov V. B., “On the least possible type of entire functions of order $\rho\in(0,\,1)$ with positive zeros”, Izv. Math., 75:1 (2011), 1–27 | DOI | DOI | MR | Zbl
[4] Sherstyukova O. V., “On the influence of the step sequence of zeros of entire functions of order less than one on the value of its type”, Science in high schools : mathematics, computer science, physics, education, Moscow Pedagogical State University, M., 2010, 192–195 (in Russian)
[5] Braichev G. G., Sherstyukova O. V., “The greatest possible lower type of entire functions of order $\rho\in(0,\,1)$ with zeros of fixed $\rho$-densities”, Math. Notes, 90:1–2 (2011), 189–203 | DOI | DOI | MR | Zbl
[6] Sherstyukova O. V., “On extremal type of an entire function of order less than unity with zeros of prescribed densities and step”, Ufa Mathematical Journal, 4:1 (2012), 151–155 | MR | Zbl
[7] Braichev G. G., “The least type of an entire function of order $\rho\in(0,1)$ having positive zeros with prescribed averaged densities”, Sbornik: Mathematics, 203:7 (2012), 950–975 | DOI | DOI | MR | Zbl
[8] Braichev G. G., Sherstyukov V. B., “On the growth of entire functions with discretely measurable zeros”, Math. Notes, 91:5–6 (2012), 630–644 | DOI | DOI | MR | Zbl
[9] Valiron G., “Sur les fonctions entieres d'ordre nul et d'ordre fini et en particulier les fonctions a correspondance reguliere”, Annales de la faculte des sciences de Toulouse. Ser. 3, 5 (1913), 117–257 | DOI | MR