Dominant integrands growth estimates and smoothness of variational functionals in Sobolev spaces
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 422-432.

Voir la notice de l'article provenant de la source Math-Net.Ru

For variational functionals in Sobolev spaces $\{W^{1,p}\}\;(1\leq p\infty)$ we introduce a sequence of so-called dominant “growth estimates” for the gradient of appropriate order of the integrand, each of which guarantees the appropriate level of smoothness of variational functional in the $C^{1}$-smooth points of the Sobolev space. Earlier studied K-pseudopolynomial representations of the integrand are particular cases of dominant growth estimates. However, unlike the pseudopolynomial case $(p\in \mathbb{N})$, our approach enables us to consider variational problems on the complete Sobolev scale $(1\leq p\infty)$.
@article{ISU_2015_15_4_a6,
     author = {I. V. Orlov and I. A. Romanenko},
     title = {Dominant integrands growth estimates and smoothness of variational functionals in {Sobolev} spaces},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {422--432},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a6/}
}
TY  - JOUR
AU  - I. V. Orlov
AU  - I. A. Romanenko
TI  - Dominant integrands growth estimates and smoothness of variational functionals in Sobolev spaces
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 422
EP  - 432
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a6/
LA  - ru
ID  - ISU_2015_15_4_a6
ER  - 
%0 Journal Article
%A I. V. Orlov
%A I. A. Romanenko
%T Dominant integrands growth estimates and smoothness of variational functionals in Sobolev spaces
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 422-432
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a6/
%G ru
%F ISU_2015_15_4_a6
I. V. Orlov; I. A. Romanenko. Dominant integrands growth estimates and smoothness of variational functionals in Sobolev spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 422-432. http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a6/

[1] Tonelli L., Fondamenti di Calcolo delle Variazioni, Zanichelli, Bologna, 1921–1923

[2] Dacorogna B., Direct methods in the calculus of variations, Springer-Verlag, N. Y., 1989 | MR | Zbl

[3] Jost J., Li-Jost X., Calculus of variations, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[4] Galeev Je. M., Zelikin M. I., Konjagin S. V., Magaril-Il'jaev G. G., Osmolovsky N. P., Protasov V. Yu., Tikhomirov V. M., Fursikov A. V., Optimal control, MCNMO, M., 2008 (in Russian)

[5] Orlov I. V., Bozhonok E. V., Additional chapters of modern science. The calculus of variations in Sobolev space $H^{1}$, tutorial, DIAJPI, Simferopol', 2010 (in Russian)

[6] Kuz'menko E. M., Compact extrema and compact-analytical properties of variational functionals in the scale of Sobolev spaces $W^{1,p}$ over multidimensional domain, Dr. phys. and math. sci. diss., Simferopol', 2014, 142 pp. (in Russian)

[7] Orlov I. V., “Compact-analitical properties of variational functionals in Sobolev spaces $W^{1,p}$”, Eurasian Math. J., 3:2 (2012), 94–119 | MR | Zbl

[8] Skrypnik I. V., Nonlinear elliptic equations of a higher order, Naukova dumka, Kiev, 1973 (in Russian) | MR

[9] Schmeisser H.-J., “Recent developments in the theory of function spaces with dominating mixed smoothness”, Nonlinear Analysis, Function Spaces and Applications, Proc. of the Spring School (Prague, May 30–June 6, 2006), v. 8, Czech Academy of Sciences, Mathematical Institute, Praha, 2007, 145–204 | MR | Zbl

[10] Orlov I. V., Stonjakin F. S., “Limit shape of property of the Radon–Nikodim is valid in any Frechet space”, Modern mathematics. Fundamental directions, 37, 2010, 55–69 (in Russian)

[11] Bogachev V. I., Foundations of the theory of measure, v. 1, NIC “Reguljarnaja i haoticheskaja dinamika”, M.–Izhevsk, 2003 (in Russian)