Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_4_a6, author = {I. V. Orlov and I. A. Romanenko}, title = {Dominant integrands growth estimates and smoothness of variational functionals in {Sobolev} spaces}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {422--432}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a6/} }
TY - JOUR AU - I. V. Orlov AU - I. A. Romanenko TI - Dominant integrands growth estimates and smoothness of variational functionals in Sobolev spaces JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 422 EP - 432 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a6/ LA - ru ID - ISU_2015_15_4_a6 ER -
%0 Journal Article %A I. V. Orlov %A I. A. Romanenko %T Dominant integrands growth estimates and smoothness of variational functionals in Sobolev spaces %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 422-432 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a6/ %G ru %F ISU_2015_15_4_a6
I. V. Orlov; I. A. Romanenko. Dominant integrands growth estimates and smoothness of variational functionals in Sobolev spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 422-432. http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a6/
[1] Tonelli L., Fondamenti di Calcolo delle Variazioni, Zanichelli, Bologna, 1921–1923
[2] Dacorogna B., Direct methods in the calculus of variations, Springer-Verlag, N. Y., 1989 | MR | Zbl
[3] Jost J., Li-Jost X., Calculus of variations, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl
[4] Galeev Je. M., Zelikin M. I., Konjagin S. V., Magaril-Il'jaev G. G., Osmolovsky N. P., Protasov V. Yu., Tikhomirov V. M., Fursikov A. V., Optimal control, MCNMO, M., 2008 (in Russian)
[5] Orlov I. V., Bozhonok E. V., Additional chapters of modern science. The calculus of variations in Sobolev space $H^{1}$, tutorial, DIAJPI, Simferopol', 2010 (in Russian)
[6] Kuz'menko E. M., Compact extrema and compact-analytical properties of variational functionals in the scale of Sobolev spaces $W^{1,p}$ over multidimensional domain, Dr. phys. and math. sci. diss., Simferopol', 2014, 142 pp. (in Russian)
[7] Orlov I. V., “Compact-analitical properties of variational functionals in Sobolev spaces $W^{1,p}$”, Eurasian Math. J., 3:2 (2012), 94–119 | MR | Zbl
[8] Skrypnik I. V., Nonlinear elliptic equations of a higher order, Naukova dumka, Kiev, 1973 (in Russian) | MR
[9] Schmeisser H.-J., “Recent developments in the theory of function spaces with dominating mixed smoothness”, Nonlinear Analysis, Function Spaces and Applications, Proc. of the Spring School (Prague, May 30–June 6, 2006), v. 8, Czech Academy of Sciences, Mathematical Institute, Praha, 2007, 145–204 | MR | Zbl
[10] Orlov I. V., Stonjakin F. S., “Limit shape of property of the Radon–Nikodim is valid in any Frechet space”, Modern mathematics. Fundamental directions, 37, 2010, 55–69 (in Russian)
[11] Bogachev V. I., Foundations of the theory of measure, v. 1, NIC “Reguljarnaja i haoticheskaja dinamika”, M.–Izhevsk, 2003 (in Russian)