Interpolation of continuous in ordered $H$-variation functions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 418-422.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1972 D. Vaterman introduced a class of functions of $\Lambda$-bounded variation (in particular, a harmonic variation or an $H$-variation). Later he introduced also the class of functions of ordered $\Lambda$-bounded variation and the class of continuous in $\Lambda$-variation functions. These classes have been used by many authors in studies on the convergence and summability of the Fourier series. This paper investigates the behavior of the Lagrange interpolation of continuous in ordered $H$-variation functions. We prove a result: if $f\in C_{2\pi}$ is continuous in ordered harmonic variation on $[-\pi,\pi]$, then the Lagrange trigonometric polynomials $\{L_n(f,x)\}$ based on equidistant nodes converge to $f$ uniformly on $\mathbb{R}$.
@article{ISU_2015_15_4_a5,
     author = {V. V. Novikov},
     title = {Interpolation of continuous in ordered $H$-variation functions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {418--422},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a5/}
}
TY  - JOUR
AU  - V. V. Novikov
TI  - Interpolation of continuous in ordered $H$-variation functions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 418
EP  - 422
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a5/
LA  - ru
ID  - ISU_2015_15_4_a5
ER  - 
%0 Journal Article
%A V. V. Novikov
%T Interpolation of continuous in ordered $H$-variation functions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 418-422
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a5/
%G ru
%F ISU_2015_15_4_a5
V. V. Novikov. Interpolation of continuous in ordered $H$-variation functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 418-422. http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a5/

[1] Waterman D., “On convergence of Fourier Series of functions of generalized bounded variation”, Studia Math., 44 (1972), 107–117 | MR | Zbl

[2] Waterman D., “$\Lambda$-bounded variation : recent results and unsolved problems”, Real Anal. Exchange, 4 (1978–1979), 69–75

[3] Belna C. L., “On ordered harmonic bounded variation”, Proc. Amer. Math. Soc., 80 (1980), 441–444 | DOI | MR | Zbl

[4] Prus-Wisniowski F., “On ordered $\Lambda$-bounded variation”, Proc. Amer. Math. Soc., 109 (1990), 375–383 | DOI | MR | Zbl

[5] Waterman D., “On the note of C. L. Belna”, Proc. Amer. Math. Soc., 80 (1980), 445–447 | DOI | MR | Zbl

[6] Kelzon A., “On trigonometric interpolation of functions of $\Lambda$-bounded variation”, Dokl. AN SSSR, 286:5 (1986), 1062–1064 | MR | Zbl

[7] Privalov A. A., “Uniform convergence of Lagrange interpolation processes”, Math. Notes, 39:2 (1986), 228–243 | MR

[8] Novikov V. V., “On Birkhoff Interpolation of Functions of Ordered $\Lambda$-bounded Variation”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 13:1/2 (2013), 81–83 (in Russian) | Zbl