Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_4_a2, author = {A. P. Bulanov}, title = {Invariants on a set of reciprocal iterated exponential power coefficients}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {383--391}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a2/} }
TY - JOUR AU - A. P. Bulanov TI - Invariants on a set of reciprocal iterated exponential power coefficients JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 383 EP - 391 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a2/ LA - ru ID - ISU_2015_15_4_a2 ER -
%0 Journal Article %A A. P. Bulanov %T Invariants on a set of reciprocal iterated exponential power coefficients %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 383-391 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a2/ %G ru %F ISU_2015_15_4_a2
A. P. Bulanov. Invariants on a set of reciprocal iterated exponential power coefficients. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 383-391. http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a2/
[1] Bulanov A. P., “About recurrence formula defining indicators of an inverse function of Lambert”, Modern Problems of Function Theory and Their Application, Proc. 16th Saratov Winters School (Saratov, 2012), 29–32 (in Russian)
[2] Dubinov A. E., Galidakis I. N., “Explicit Solution of the Kepler Equation”, Physics of Particles and Nuclei Letters, 4:3 (2007), 213–216 | DOI | MR | Zbl
[3] Galidakis I. N., “On an application of Lambert's $W$ function to infinite exponentials”, Complex Var. Theory Appl., 49:11 (2004), 759–780 | MR | Zbl
[4] Galidacis I. N., “On Solving the $p$-th Complex Auxiliary Equation $f^{(p)}(z)=z$”, Complex Variables, 50:13 (2005), 977–997 | DOI | MR
[5] Bulanov A. P., “Regularity of infinite exponentials”, Izv. Math., 62:5 (1998), 901–928 | DOI | DOI | MR | Zbl
[6] Bulanov A. P., “Infinite iterated power with alternating coefficients”, Sb. Math., 192:11 (2001), 1589–1620 | DOI | DOI | MR | Zbl
[7] Bulanov A. P., “Chain exponents and function Lambert”, Proc. Math. Center named N. I. Lobachevskian, 43, 2011, 64–71 (in Russian)
[8] Bulanov A. P., “On invariants on the set of indicators of mutually inverse functions Lambert submitted chain exhibitors”, Modern Methods of Function Theory and Related Problems, Proc. Voronezh Winters School (Voronezh, 2013), 295–303 (in Russian)
[9] Bulanov A. P., “The sixth indicator is the inverse function of Lambert presented chain exponent”, Complex analysis and applications, VI Petrozavodsk Intern. Conf. (Petrozavodsk, 2012), 5–10 (in Russian)