Invariants on a set of reciprocal iterated exponential power coefficients
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 383-391

Voir la notice de l'article provenant de la source Math-Net.Ru

A chain exponent $L_B(z)=z\cdot B(z)$, having a power sequence $\{b_n\}_{n=1}^{\infty}$, $b_n\ne0$, $n=1,2,\ldots$, $\overline{\lim\limits_{n\to\infty}}|b_n|\infty$, is defined by a function sequence $B(z)=e^{b_1\cdot z\cdot B_1(z)}$, $B_1(z)=e^{b_2\cdot z\cdot B_2(z)}, \ldots, B_{k-1}(z)=e^{b_k\cdot z\cdot B_k(z)},\ldots$ (we use the denotation $B(z)=\langle e^z;b_1,b_2,\ldots\rangle$ in the paper). Similarly, a chain exponent $L_a(w)=w\cdot A(w)$ is defined where $A(w)=\langle e^w;a_1,a_2,\ldots\rangle$, having a power sequence of mutually inverse chain exponents up to the $4$-th order. In the paper, we find the concrete invariant of the $4$-t order expressed by the form of $3$-rd order with respect to powers. We give an example of two number sequences which are the powers of mutually inverse chain exponents adducing the truth of transformations performed.
@article{ISU_2015_15_4_a2,
     author = {A. P. Bulanov},
     title = {Invariants on a set of reciprocal iterated exponential power coefficients},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {383--391},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a2/}
}
TY  - JOUR
AU  - A. P. Bulanov
TI  - Invariants on a set of reciprocal iterated exponential power coefficients
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 383
EP  - 391
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a2/
LA  - ru
ID  - ISU_2015_15_4_a2
ER  - 
%0 Journal Article
%A A. P. Bulanov
%T Invariants on a set of reciprocal iterated exponential power coefficients
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 383-391
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a2/
%G ru
%F ISU_2015_15_4_a2
A. P. Bulanov. Invariants on a set of reciprocal iterated exponential power coefficients. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 383-391. http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a2/