Quantum computers and quantum algorithms. Part 1. Quantum computers
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 462-477.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the principles of operation of quantum computers. Competitive advantages of quantum computing are shown and some variants of a construction of an ideal quantum computer proposed. We analyze also the computational process in a quantum computer from the point of view of the complexity of algorithms. Implementation of nodes of a quantum computer is exemplified based on quantum communication schemes. The operation of Bloch sphere and visualization of the state of the qubit are described. Major obstacles to the creation of quantum computers are considered.
@article{ISU_2015_15_4_a10,
     author = {V. M. Solovyev},
     title = {Quantum computers and quantum algorithms. {Part} 1. {Quantum} computers},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {462--477},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a10/}
}
TY  - JOUR
AU  - V. M. Solovyev
TI  - Quantum computers and quantum algorithms. Part 1. Quantum computers
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 462
EP  - 477
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a10/
LA  - ru
ID  - ISU_2015_15_4_a10
ER  - 
%0 Journal Article
%A V. M. Solovyev
%T Quantum computers and quantum algorithms. Part 1. Quantum computers
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 462-477
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a10/
%G ru
%F ISU_2015_15_4_a10
V. M. Solovyev. Quantum computers and quantum algorithms. Part 1. Quantum computers. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 462-477. http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a10/

[1] Bogdanov U. I., Kokin A. A., Lukichev V. F., Orlikovskij A. A., Semenihin I. A., Chernavskij A. U., “Quantum mechanics and the development of information technology”, Information technologies and computer systems, 2012, no. 1, 17–31 (in Russian)

[2] Closing in on quantum computing, (accessed 23, June, 2015) http://www.wired.com/2014/10/quantum-computing-close

[3] Lloyd S., Programming universe. A quantum computer science and the future, Alpina non-fiction, M., 2014, 256 pp.

[4] Valiev K. A., “Quantum computers and quantum computing”, Successes of physical sciences, 175:1 (2005), 3–39 | DOI

[5] Smale S., “On the problems of computational complexity”, Mathematical education. Ser. 3, 4, MCNTO, M., 2000, 115–119

[6] Shor P. W., Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, 1996, 28 pp., arXiv: quant-ph/9508027 | MR

[7] Nielsen M., Chuang I., Quantum Computation and Quantum Information, 10th Anniversary Edition, Cambridge Univ. Press, 2010, 698 pp. | MR | Zbl

[8] Rieffe E. G., Polak W. H., Quantum computing: a gentle introduction. Scientific and Engineering Computation, MIT Press, 2011, 389 pp. | MR

[9] Belinskij A. V., “Quantum nonlocality and the absence of a priori values for measurable quantities in experiments with photons”, Successes of physical sciences, 173:8 (2003), 905–909 | DOI

[10] Bouwmeester D., Ekert F., Zeilinger A., The Physics of Quantum Information, Springer, 2000, 315 pp. | MR | Zbl

[11] Menskij M. B., Quantum measurement and decoherence. Models and phenomenology, Trans. from English, Fizmatlit, M., 2001, 232 pp.

[12] Preskill J., Quantum information and quantum computation, v. 2, SIC «Regular and Chaotic Dynamics», Institute of Computer Science, M.–Izhevsk, 2011, 312 pp.

[13] Algebraic and Number Theoretic Algorithms, (accessed 23, June, 2015) http://math.nist.gov/quantum/zoo/

[14] Venegas-Andraca S. E., Quantum Walks for Computer Scientists. Synthesis Lectures on Quantum Computing, Morgan Claypool, 2008, 133 pp.

[15] Kastrenakes J., Researchers smash through quantum computer storage record, (accessed 23, June, 2015) http://www.theverge.com/2013/11/14/5104668/qubits-stored-for-39-minutes-quantum-computer-new-record

[16] Kelly J., “State preservation by repetitive error detection in a superconducting quantum circuit”, Nature, 519 (2015), 66–69 | DOI