Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_4_a1, author = {S. Yu. Antonov and A. V. Antonova}, title = {Quasi-polynomials of {Capelli}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {371--382}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a1/} }
TY - JOUR AU - S. Yu. Antonov AU - A. V. Antonova TI - Quasi-polynomials of Capelli JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 371 EP - 382 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a1/ LA - ru ID - ISU_2015_15_4_a1 ER -
S. Yu. Antonov; A. V. Antonova. Quasi-polynomials of Capelli. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 371-382. http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a1/
[1] Averyanov I. V., “Basis of graded identities of the superalgebra $M_{1,2}(F)$”, Math. Notes, 85:4 (2009), 467–483 | DOI | DOI | MR | Zbl
[2] Antonov S. Yu., “The least degree identities subspace $M_1^{(m,k)}(F)$ of matrix superalgebra $M^{(m,k)}(F)$”, Izvestiya VUZ. Matematika, 2012, no. 11, 1–16 | MR | Zbl
[3] Antonov S. Yu., “Some types of identities of subspaces $M_0^{(m,k)}(F)$, $M_1^{(m,k)}(F)$ of matrix superalgebra $M^{(m,k)}(F)$”, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 154:1 (2012), 189–201 (in Russian)
[4] Chang Q., “Some consequences of the standard polynomial”, Proc. Amer. Math. Soc., 104:3 (1988), 707–710 | DOI | MR | Zbl
[5] Antonov S. Yu., Antonova A. V., “To Chang Theorem”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 15:3 (2015), 247–251 (in Russian)
[6] Amitsur S. A., Levitzki J., “Minimal identities for algebras”, Proc. Amer. Math. Soc., 1:4 (1950), 449–463 | DOI | MR | Zbl