Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_3_a7, author = {A. A. Tyuleneva}, title = {Approximation of functions of bounded $p$-variation by {Euler} means}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {300--309}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a7/} }
TY - JOUR AU - A. A. Tyuleneva TI - Approximation of functions of bounded $p$-variation by Euler means JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 300 EP - 309 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a7/ LA - ru ID - ISU_2015_15_3_a7 ER -
A. A. Tyuleneva. Approximation of functions of bounded $p$-variation by Euler means. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 300-309. http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a7/
[1] Terekhin A. P., “The approximation of functions of bounded $p$-variation”, Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 2, 171–187 (in Russian) | MR
[2] Bari N. K., Stechkin S. B., “Best approximations and differential properties of two conjugate functions”, Tr. Mosk. Mat. Obs., 5, 1956, 483–522 (in Russian) | MR | Zbl
[3] Hardy G. H., Divergent series, Oxford Univ. Press, Oxford, 1949 | MR | Zbl
[4] Timan A. F., Theory of approximation of functions of a real variable, MacMillan, New York, 1963 | MR
[5] Golubov B. I., “On the best approximation of $p$-absolutely continuous functions”, Some Questions of Function Theory and Functional Analysis, 4, Izd. Tbilisi Univ., Tbilisi, 1988, 85–99 (in Russian)
[6] Zygmund A., Trigonometric series, v. 1, Cambridge Univ. Press, Cambridge, 1959 | MR | MR | Zbl
[7] Volosivets S. S., “Convergence of series of Fourier coefficients of $p$-absolutely continuous functions”, Analysis Math., 26:1 (2000), 63–80 | DOI | MR | Zbl
[8] Tyuleneva A. A., “Approximation of bounded $p$-variation periodic functions by generalized Abel–Poisson means and logarithmic means”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:4/1 (2013), 25–32 (in Russian) | Zbl
[9] Chui C. K., Holland A. S. B., “On the order of approximation by Euler and Borel means”, J. Approxim. Theory, 39:1 (1983), 24–38 | DOI | MR | Zbl
[10] Rempulska l., Tomczak K., “On Euler and Borel means of Fourier series in Hölder spases”, Proc. of A. Razmadze Math. Institute, 140 (2006), 141–153 | MR | Zbl