Gluing rule for Bernstein polynomials on the symmetric interval
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 288-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study special laws that arise in a sequence of the Bernstein polynomials on a symmetric interval. In particular, we set the exact rule of regular pairwise coincidence (gluing rule) which is acting for the Bernstein polynomials of a piecewise linear generating function with rational abscissas of break points. The accuracy of this rule for convex piecewise linear generating functions is shown. The possibility of “random” gluing for the Bernstein polynomials in a non-convex case is noted. We give also some examples and illustrations.
@article{ISU_2015_15_3_a6,
     author = {I. V. Tikhonov and V. B. Sherstyukov and M. A. Petrosova},
     title = {Gluing rule for {Bernstein} polynomials on the symmetric interval},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {288--300},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a6/}
}
TY  - JOUR
AU  - I. V. Tikhonov
AU  - V. B. Sherstyukov
AU  - M. A. Petrosova
TI  - Gluing rule for Bernstein polynomials on the symmetric interval
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 288
EP  - 300
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a6/
LA  - ru
ID  - ISU_2015_15_3_a6
ER  - 
%0 Journal Article
%A I. V. Tikhonov
%A V. B. Sherstyukov
%A M. A. Petrosova
%T Gluing rule for Bernstein polynomials on the symmetric interval
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 288-300
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a6/
%G ru
%F ISU_2015_15_3_a6
I. V. Tikhonov; V. B. Sherstyukov; M. A. Petrosova. Gluing rule for Bernstein polynomials on the symmetric interval. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 288-300. http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a6/

[1] Lorentz G. G., Bernstein Polynomials, Chelsea Publ. Comp., N.Y., 1986, xi+134 pp. | MR | Zbl

[2] Videnskii V. S., Bernstein Polynomials, Posobie k spetskursu, LGPI, L., 1990, 64 pp. (in Russian)

[3] Davis P. J., Interpolation and Approximation, Dover, N.Y., 1975, xvi+394 pp. | MR | Zbl

[4] DeVore R. A., Lorentz G. G., Constructive Approximation, Springer-Verlag, Berlin–Heidelberg–N.Y., 1993, x+450 pp. | MR | Zbl

[5] Tikhonov I. V., Sherstyukov V. B., Petrosova M. A., “Bernstein Polynomials: the old and the new”, Issledovaniia po matematicheskomu analizu, v. 1, Matematicheskii forum, 8, Publ. VNTs RAN, Vladikavkaz, 2014, 126–175 (in Russian)

[6] Schoenberg I. J., “On Variation Diminishing Approximation Methods”, On Numerical Approximation, Proceedings of a Symposium conducted by the Math. Research Center US Army (University of Wisconsin, Madison, April 21–23, 1958), ed. R. E. Langer, University of Wisconsin Press, Madison, 1959, 249–274 | MR

[7] Freedman D., Passow E., “Degenerate Bernstein polynomials”, J. Approx. Theory, 39:1 (1983), 89–92 | DOI | MR | Zbl

[8] Passow E., “Some unusual Bernstein polynomials”, Approximation Theory IV, Proc. Intern. Symposium on Approximation Theory (Texas A University, College Station, Texas, January 10–14, 1983), eds. C. K. Chui, L. L. Schumaker, J. D. Ward, Academic Press, N.Y.–London, 1983, 649–652 | MR

[9] Passow E., “Deficient Bernstein polynomials”, J. Approx. Theory, 59:3 (1989), 282–285 | DOI | MR | Zbl

[10] Kocić Lj. M., Della Veccia B., “Degeneracy of positive linear operators”, Facta Universitatis (Nis̆). Ser. Mathematics and Informatics, 13 (1998), 59–72 | MR | Zbl

[11] Petukhova N. Yu., Tikhonov I. V., Sherstyukov V. B., “Gluing property of Bernstein polynomials for piecewise linear continuous functions”, Matematika, informatika, phizika v nauke i obrazovanii, Sbornik nauchnykh trudov k 140-letiyu MPGU, Prometei, M., 2012, 81–82 (in Russian)

[12] Tikhonov I. V., Sherstyukov V. B., “The module function approximation by Bernstein polynomials”, Vestnik ChelGU. Matematika. Mekhanika. Informatika, 15:26 (2012), 6–40 (in Russian)

[13] Temple W. B., “Stieltjes integral representation of convex functions”, Duke Mathematical Journal, 21:3 (1954), 527–531 | DOI | MR | Zbl

[14] Aramă O., “Rroprientăţi privind monotonia şirului polinoamelor de interpolare ale lui S. N. Bernstein şi aplicarea lor la studiul aproximării funcţiilor”, Studii şi cercetări de Matematică (Cluj), 8:3–4 (1957), 195–210