Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_3_a6, author = {I. V. Tikhonov and V. B. Sherstyukov and M. A. Petrosova}, title = {Gluing rule for {Bernstein} polynomials on the symmetric interval}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {288--300}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a6/} }
TY - JOUR AU - I. V. Tikhonov AU - V. B. Sherstyukov AU - M. A. Petrosova TI - Gluing rule for Bernstein polynomials on the symmetric interval JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 288 EP - 300 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a6/ LA - ru ID - ISU_2015_15_3_a6 ER -
%0 Journal Article %A I. V. Tikhonov %A V. B. Sherstyukov %A M. A. Petrosova %T Gluing rule for Bernstein polynomials on the symmetric interval %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 288-300 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a6/ %G ru %F ISU_2015_15_3_a6
I. V. Tikhonov; V. B. Sherstyukov; M. A. Petrosova. Gluing rule for Bernstein polynomials on the symmetric interval. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 288-300. http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a6/
[1] Lorentz G. G., Bernstein Polynomials, Chelsea Publ. Comp., N.Y., 1986, xi+134 pp. | MR | Zbl
[2] Videnskii V. S., Bernstein Polynomials, Posobie k spetskursu, LGPI, L., 1990, 64 pp. (in Russian)
[3] Davis P. J., Interpolation and Approximation, Dover, N.Y., 1975, xvi+394 pp. | MR | Zbl
[4] DeVore R. A., Lorentz G. G., Constructive Approximation, Springer-Verlag, Berlin–Heidelberg–N.Y., 1993, x+450 pp. | MR | Zbl
[5] Tikhonov I. V., Sherstyukov V. B., Petrosova M. A., “Bernstein Polynomials: the old and the new”, Issledovaniia po matematicheskomu analizu, v. 1, Matematicheskii forum, 8, Publ. VNTs RAN, Vladikavkaz, 2014, 126–175 (in Russian)
[6] Schoenberg I. J., “On Variation Diminishing Approximation Methods”, On Numerical Approximation, Proceedings of a Symposium conducted by the Math. Research Center US Army (University of Wisconsin, Madison, April 21–23, 1958), ed. R. E. Langer, University of Wisconsin Press, Madison, 1959, 249–274 | MR
[7] Freedman D., Passow E., “Degenerate Bernstein polynomials”, J. Approx. Theory, 39:1 (1983), 89–92 | DOI | MR | Zbl
[8] Passow E., “Some unusual Bernstein polynomials”, Approximation Theory IV, Proc. Intern. Symposium on Approximation Theory (Texas A University, College Station, Texas, January 10–14, 1983), eds. C. K. Chui, L. L. Schumaker, J. D. Ward, Academic Press, N.Y.–London, 1983, 649–652 | MR
[9] Passow E., “Deficient Bernstein polynomials”, J. Approx. Theory, 59:3 (1989), 282–285 | DOI | MR | Zbl
[10] Kocić Lj. M., Della Veccia B., “Degeneracy of positive linear operators”, Facta Universitatis (Nis̆). Ser. Mathematics and Informatics, 13 (1998), 59–72 | MR | Zbl
[11] Petukhova N. Yu., Tikhonov I. V., Sherstyukov V. B., “Gluing property of Bernstein polynomials for piecewise linear continuous functions”, Matematika, informatika, phizika v nauke i obrazovanii, Sbornik nauchnykh trudov k 140-letiyu MPGU, Prometei, M., 2012, 81–82 (in Russian)
[12] Tikhonov I. V., Sherstyukov V. B., “The module function approximation by Bernstein polynomials”, Vestnik ChelGU. Matematika. Mekhanika. Informatika, 15:26 (2012), 6–40 (in Russian)
[13] Temple W. B., “Stieltjes integral representation of convex functions”, Duke Mathematical Journal, 21:3 (1954), 527–531 | DOI | MR | Zbl
[14] Aramă O., “Rroprientăţi privind monotonia şirului polinoamelor de interpolare ale lui S. N. Bernstein şi aplicarea lor la studiul aproximării funcţiilor”, Studii şi cercetări de Matematică (Cluj), 8:3–4 (1957), 195–210