On accuracy of estimation of the number of steps for the algorithm for construction of scaling function on local fields
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 279-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss a problem of accuracy of estimation of the number of steps for the algorithm for construction of orthogonal scaling function which generates multiresolution analisys on local fields of positive characteristic. The resulting function is a step function with a compact support. The number of steps in the algorithm is closely related to the support of the Fourier transformation of the scaling function. Thus the estimate for number of steps is not only of computational interest. The upper estimate for this number was already known. In this work the accurate number of steps is found. It appeares to be equal to the previously known upper estimate.
@article{ISU_2015_15_3_a5,
     author = {Iu. S. Kruss},
     title = {On accuracy of estimation of the number of steps for the algorithm for construction of scaling function on local fields},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {279--287},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a5/}
}
TY  - JOUR
AU  - Iu. S. Kruss
TI  - On accuracy of estimation of the number of steps for the algorithm for construction of scaling function on local fields
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 279
EP  - 287
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a5/
LA  - ru
ID  - ISU_2015_15_3_a5
ER  - 
%0 Journal Article
%A Iu. S. Kruss
%T On accuracy of estimation of the number of steps for the algorithm for construction of scaling function on local fields
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 279-287
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a5/
%G ru
%F ISU_2015_15_3_a5
Iu. S. Kruss. On accuracy of estimation of the number of steps for the algorithm for construction of scaling function on local fields. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 279-287. http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a5/

[1] Jiang H., Li D., Jin N., “Multiresolution analysis on local fields”, J. Math. Anal. Appl., 294 (2004), 523–532 | DOI | MR | Zbl

[2] Protasov V. Yu., Farkov Y. A., “Dyadic wavelets and refinable functions on a halfline”, Sb. Math., 197:10 (2006), 1529–1558 | DOI | DOI | MR | Zbl

[3] Protasov V. Yu., “Approximation by dyadic wavelets”, Sb. Math., 198:11 (2007), 1665–1681 | DOI | DOI | MR | Zbl

[4] Farkov Yu. A., “Multiresolution Analysis and Wavelets on Vilenkin Groups”, Facta universitatis, Ser. Elec. Energ., 21:3 (2008), 309–325 | DOI

[5] Farkov Yu. A., “Orthogonal wavelets with compact support on locally compact abelian groups”, Izv. Math., 69:3 (2005), 623–650 | DOI | DOI | MR | Zbl

[6] Farkov Yu. A., “Orthogonal wavelets on direct products of cyclic groups”, Math. Notes, 82:6 (2007), 843–859 | DOI | DOI | MR | Zbl

[7] Lukomskii S. F., “Step refinable functions and orthogonal MRA on Vilenkin groups”, J. Fourier Anal. Appl., 20:1 (2014), 42–65 | DOI | MR | Zbl

[8] Li D., Jiang H., “The necessary condition and sufficient conditions for wavelet frame on local fields”, J. Math. Anal. Appl., 345 (2008), 500–510 | DOI | MR | Zbl

[9] Behera B., Jahan Q., “Wavelet packets and wavelet frame packets on local fields of positive characteristic”, J. Math. Anal. Appl., 395 (2012), 1–14 | DOI | MR | Zbl

[10] Behera B., Jahan Q., “Multiresolution analysis on local fields and characterization of scaling functions”, Adv. Pure. Appl. Math., 3 (2012), 181–202 | DOI | MR | Zbl

[11] Behera B., Jahan Q., “Biorthogonal Wavelets on Local Fields of Positive Characteristic”, Comm. in Math. Anal., 15:2 (2013), 52–75 | MR | Zbl

[12] Taibleson M. H., Fourier Analysis on Local Fields, Princeton Univ. Press, Princeton, 1975 | MR | Zbl

[13] Lukomskii S. F., Vodolazov A. M., Non-Haar MRA on local Fields of positive characteristic, 2014, arXiv: (Accessed 15.07.2014) 1407.4069 | MR

[14] Berdnikov G., Kruss Iu., Lukomskii S., On orthogonal systems of shifts of scaling function on local fields of positive characteristic, 2015, arXiv: (Accessed 30.03.2015) 1503.08600

[15] Lidl R., Niederreiter H., Finite Fields, Encyclopedia Math. Appl., 20, Addison-Wesley, Reading, Mass., 1983, 755 pp. | MR | Zbl

[16] Gelfand I. M., Graev M. I., Piatetski-Shapiro I. I., Theory of authomorphic functions, W. B. Saunders Company, Philadelphia–London–Toronto, 1969, 426 pp. | MR

[17] Vodolasov A. M., Lukomskii S. F., “MRA on Local Fields of Positive Characteristic”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:4/2 (2014), 511–518 (in Russian) | Zbl