Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_3_a5, author = {Iu. S. Kruss}, title = {On accuracy of estimation of the number of steps for the algorithm for construction of scaling function on local fields}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {279--287}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a5/} }
TY - JOUR AU - Iu. S. Kruss TI - On accuracy of estimation of the number of steps for the algorithm for construction of scaling function on local fields JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 279 EP - 287 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a5/ LA - ru ID - ISU_2015_15_3_a5 ER -
%0 Journal Article %A Iu. S. Kruss %T On accuracy of estimation of the number of steps for the algorithm for construction of scaling function on local fields %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 279-287 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a5/ %G ru %F ISU_2015_15_3_a5
Iu. S. Kruss. On accuracy of estimation of the number of steps for the algorithm for construction of scaling function on local fields. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 279-287. http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a5/
[1] Jiang H., Li D., Jin N., “Multiresolution analysis on local fields”, J. Math. Anal. Appl., 294 (2004), 523–532 | DOI | MR | Zbl
[2] Protasov V. Yu., Farkov Y. A., “Dyadic wavelets and refinable functions on a halfline”, Sb. Math., 197:10 (2006), 1529–1558 | DOI | DOI | MR | Zbl
[3] Protasov V. Yu., “Approximation by dyadic wavelets”, Sb. Math., 198:11 (2007), 1665–1681 | DOI | DOI | MR | Zbl
[4] Farkov Yu. A., “Multiresolution Analysis and Wavelets on Vilenkin Groups”, Facta universitatis, Ser. Elec. Energ., 21:3 (2008), 309–325 | DOI
[5] Farkov Yu. A., “Orthogonal wavelets with compact support on locally compact abelian groups”, Izv. Math., 69:3 (2005), 623–650 | DOI | DOI | MR | Zbl
[6] Farkov Yu. A., “Orthogonal wavelets on direct products of cyclic groups”, Math. Notes, 82:6 (2007), 843–859 | DOI | DOI | MR | Zbl
[7] Lukomskii S. F., “Step refinable functions and orthogonal MRA on Vilenkin groups”, J. Fourier Anal. Appl., 20:1 (2014), 42–65 | DOI | MR | Zbl
[8] Li D., Jiang H., “The necessary condition and sufficient conditions for wavelet frame on local fields”, J. Math. Anal. Appl., 345 (2008), 500–510 | DOI | MR | Zbl
[9] Behera B., Jahan Q., “Wavelet packets and wavelet frame packets on local fields of positive characteristic”, J. Math. Anal. Appl., 395 (2012), 1–14 | DOI | MR | Zbl
[10] Behera B., Jahan Q., “Multiresolution analysis on local fields and characterization of scaling functions”, Adv. Pure. Appl. Math., 3 (2012), 181–202 | DOI | MR | Zbl
[11] Behera B., Jahan Q., “Biorthogonal Wavelets on Local Fields of Positive Characteristic”, Comm. in Math. Anal., 15:2 (2013), 52–75 | MR | Zbl
[12] Taibleson M. H., Fourier Analysis on Local Fields, Princeton Univ. Press, Princeton, 1975 | MR | Zbl
[13] Lukomskii S. F., Vodolazov A. M., Non-Haar MRA on local Fields of positive characteristic, 2014, arXiv: (Accessed 15.07.2014) 1407.4069 | MR
[14] Berdnikov G., Kruss Iu., Lukomskii S., On orthogonal systems of shifts of scaling function on local fields of positive characteristic, 2015, arXiv: (Accessed 30.03.2015) 1503.08600
[15] Lidl R., Niederreiter H., Finite Fields, Encyclopedia Math. Appl., 20, Addison-Wesley, Reading, Mass., 1983, 755 pp. | MR | Zbl
[16] Gelfand I. M., Graev M. I., Piatetski-Shapiro I. I., Theory of authomorphic functions, W. B. Saunders Company, Philadelphia–London–Toronto, 1969, 426 pp. | MR
[17] Vodolasov A. M., Lukomskii S. F., “MRA on Local Fields of Positive Characteristic”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:4/2 (2014), 511–518 (in Russian) | Zbl