On functional stability of the solution for the problem of convex body best approximating by a ball with fixed radius
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 273-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite-dimensional problem of finding a uniform estimate (approximation in the Hausdorff metric) of a convex body by a fixed-radius ball in an arbitrary norm is considered. It is known that this problem can be reduced to a linear programming problem in the case, when the convex body and the norm ball are polytops. Therefore, we prove the functional stability of the optimal value of the objective function with respect to accuracy of the given convex body and accuracy of the unit ball for the norm used. The stability rating is derived.
@article{ISU_2015_15_3_a4,
     author = {S. I. Dudov and M. A. Osiptsev},
     title = {On functional stability of the solution for the problem of convex body best approximating by a ball with fixed radius},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {273--279},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a4/}
}
TY  - JOUR
AU  - S. I. Dudov
AU  - M. A. Osiptsev
TI  - On functional stability of the solution for the problem of convex body best approximating by a ball with fixed radius
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 273
EP  - 279
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a4/
LA  - ru
ID  - ISU_2015_15_3_a4
ER  - 
%0 Journal Article
%A S. I. Dudov
%A M. A. Osiptsev
%T On functional stability of the solution for the problem of convex body best approximating by a ball with fixed radius
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 273-279
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a4/
%G ru
%F ISU_2015_15_3_a4
S. I. Dudov; M. A. Osiptsev. On functional stability of the solution for the problem of convex body best approximating by a ball with fixed radius. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 273-279. http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a4/

[1] Nikol'skii M. S., Silin D. B., “On the best approximation of a convex compact set by elements of addial”, Proc. Steklov Inst. Math., 211, 1995, 306–321 | MR | Zbl

[2] Dudov S. I., Zlatorunskaya I. V., “Uniform estimate of a compact convex set by a ball in an arbitrary norm”, Sb. Math., 191:10 (2000), 1433–1458 | DOI | DOI | MR | Zbl

[3] Dudov S. I., “Relations between several problems of estimating convex compacta by balls”, Sb. Math., 198:1 (2007), 39–53 | DOI | DOI | MR | Zbl

[4] Dudov S. I., Osipcev M. A., “On an Approach to Approximate Solving of the Problem for the Best Approximation for Compact Body by a Ball of Fixed Radius”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:3 (2014), 267–272 | Zbl

[5] Karmanov V. G., Mathematical programming, Nauka, M., 2000 (in Russian) | MR

[6] Vasil'ev F. P., Methods of Optimization, MCSMO, M., 2011 (in Russian)

[7] Izmailov A. F., Sensitivity optimization, Fizmatlit, M., 2006 (in Russian)

[8] Pschenichnyi B. N., Convex Analysis and Extremal Problems, Nauka, M., 1980 (in Russian) | MR

[9] Dem'yanov V. F., Vasil'ev L. V., Nondifferetiable optimization, Optimization software, Inc., Publications Division, New York, 1985 | MR | MR