Almost contact metric spaces with $N$-connection
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 258-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a manifold with an almost contact metric structure $(\varphi,\vec\xi,\eta,g,X,D)$ and an endomorphism $N:D\to D$, a notion of the $N$-connection is introduced. The conditions under which an $N$-connection is compatible with an almost contact metric structure $\nabla^N\eta=\nabla^Ng=\nabla^N\vec\xi=0$ are found. The relations between the Levi–Civita connection, the Schouten–van-Kampen connection and the $N$-connection are investigated. Using the $N$-connection the conditions under which an almost contact metric structure is an almost contact Kahlerian structure are investigated.
@article{ISU_2015_15_3_a2,
     author = {S. V. Galaev},
     title = {Almost contact metric spaces with $N$-connection},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {258--264},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a2/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - Almost contact metric spaces with $N$-connection
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 258
EP  - 264
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a2/
LA  - ru
ID  - ISU_2015_15_3_a2
ER  - 
%0 Journal Article
%A S. V. Galaev
%T Almost contact metric spaces with $N$-connection
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 258-264
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a2/
%G ru
%F ISU_2015_15_3_a2
S. V. Galaev. Almost contact metric spaces with $N$-connection. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 258-264. http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a2/

[1] Cartan E., “Sur les varietes a connexion affine et la theorie de la relative generalines, I”, Ann. Sci. Ecole Norm. Sup., 40 (1923), 325–412 | MR

[2] Yano K., “On semi-symmetric metric connections”, Revue Roumaine de Math. Pures et Appliques, 15 (1970), 1579–1586 | MR | Zbl

[3] Golab S., “On semi-symmetric and quarter-symmetric linear connections”, Tensor, N. S., 29 (1975), 249–254 | MR | Zbl

[4] Schouten J., van Kampen E., “Zur Einbettungs-und Krümmungstheorie nichtholonomer Gebilde”, Math. Ann., 103 (1930), 752–783 | DOI | MR | Zbl

[5] Vagner V. V., “The geometry of an $(n-1)$-dimensional nonholonomic manifold in an $n$-dimensional space”, Trudy Sem. Vektor. Tenzor. Analiza, 5, Moscow Univ. Press, M., 1941, 173–255 (in Russian)

[6] Galaev S. V., “Almost contact Kähler manifolds of constant holomorphic sectional curvature”, Russian Math., 58:8 (2014), 35–42 | DOI | MR | MR | Zbl

[7] Pitis G., Geometry of Kenmotsu manifolds, Publishing House of Transilvania University of Brasov, Brasov, 2007, iv+160 pp. | MR | Zbl

[8] Galaev S. V., “The intrinsic geometry of almost contact metric manifolds”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 12:1 (2012), 16–22 (in Russian)

[9] Bejancu A., “Kahler contact distributions”, J. Geom. Phys., 60:12 (2010), 1958–1967 | DOI | MR | Zbl

[10] Bukusheva A. V., Galaev S. V., “Connections over a distribution and geodesic sprays”, Russian Math., 57:4 (2013), 7–13 | DOI | MR | Zbl