Almost contact metric spaces with $N$-connection
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 258-264

Voir la notice de l'article provenant de la source Math-Net.Ru

On a manifold with an almost contact metric structure $(\varphi,\vec\xi,\eta,g,X,D)$ and an endomorphism $N:D\to D$, a notion of the $N$-connection is introduced. The conditions under which an $N$-connection is compatible with an almost contact metric structure $\nabla^N\eta=\nabla^Ng=\nabla^N\vec\xi=0$ are found. The relations between the Levi–Civita connection, the Schouten–van-Kampen connection and the $N$-connection are investigated. Using the $N$-connection the conditions under which an almost contact metric structure is an almost contact Kahlerian structure are investigated.
@article{ISU_2015_15_3_a2,
     author = {S. V. Galaev},
     title = {Almost contact metric spaces with $N$-connection},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {258--264},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a2/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - Almost contact metric spaces with $N$-connection
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 258
EP  - 264
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a2/
LA  - ru
ID  - ISU_2015_15_3_a2
ER  - 
%0 Journal Article
%A S. V. Galaev
%T Almost contact metric spaces with $N$-connection
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 258-264
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a2/
%G ru
%F ISU_2015_15_3_a2
S. V. Galaev. Almost contact metric spaces with $N$-connection. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 258-264. http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a2/