To Chang theorem
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 247-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multilinear polynomials $\mathcal{H}(\bar x, \bar y)$ and $\mathcal{R}(\bar x, \bar y)$, the sum of which is the Chang polynomial $\mathcal{F}(\bar x, \bar y)$ have been introduced in this paper. It has been proved by mathematical induction method that each of them is a consequence of the standard polynomial $S^-(\bar x)$. In particular it has been shown that the double Capelli polynomial of add degree $C_{2m-1}(\bar x, \bar y)$ is also a consequence of the polynomial $S_m^-(\bar x, \bar y)$. The minimal degree of the polynomial $C_{2m-1}(\bar x, \bar y)$ in which it is a polynomial identity of matrix algebra $M_n(F)$ has been also found in the paper. The results obtained are the transfer of Chang's results over to the double Capelli polynomials of add degree.
@article{ISU_2015_15_3_a0,
     author = {S. Yu. Antonov and A. V. Antonova},
     title = {To {Chang} theorem},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {247--251},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a0/}
}
TY  - JOUR
AU  - S. Yu. Antonov
AU  - A. V. Antonova
TI  - To Chang theorem
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 247
EP  - 251
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a0/
LA  - ru
ID  - ISU_2015_15_3_a0
ER  - 
%0 Journal Article
%A S. Yu. Antonov
%A A. V. Antonova
%T To Chang theorem
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 247-251
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a0/
%G ru
%F ISU_2015_15_3_a0
S. Yu. Antonov; A. V. Antonova. To Chang theorem. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 247-251. http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a0/

[1] Chang Q., “Some consequences of the standard polynomial”, Proc. Amer. Math. Soc., 104:3 (1988), 707–710 | DOI | MR | Zbl

[2] Pierce R., Associative Algebras, Springer-Verlag, N.Y., 1982, 542 pp. | MR | Zbl

[3] Amitsur S. A., Levitzki J., “Minimal identities for algebras”, Proc. Amer. Math. Soc., 1:4 (1950), 449–463 | DOI | MR | Zbl

[4] Antonov S. Yu., “The least degree of identities in the subspace $M_1^{(m, k)} (F)$ of the matrix superalgebra $M^{(m,k)}(F)$”, Russian Math. Izvestiya VUZ. Matematika, 56:11 (2012), 1–16 | DOI | MR | Zbl

[5] Domokos M., “A generalization of a theorem of Chang”, Commun. Algebra, 23:12 (1995), 4333–4342 | DOI | MR | Zbl