Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_2_a9, author = {A. Yu. Blinkova and Yu. A. Blinkov and S. V. Ivanov and L. I. Mogilevich}, title = {Nonlinear deformation waves in a geometrically and physically nonlinear viscoelastic cylindrical shell containing viscous incompressible fluid and surrounded by an elastic medium}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {193--202}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a9/} }
TY - JOUR AU - A. Yu. Blinkova AU - Yu. A. Blinkov AU - S. V. Ivanov AU - L. I. Mogilevich TI - Nonlinear deformation waves in a geometrically and physically nonlinear viscoelastic cylindrical shell containing viscous incompressible fluid and surrounded by an elastic medium JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 193 EP - 202 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a9/ LA - ru ID - ISU_2015_15_2_a9 ER -
%0 Journal Article %A A. Yu. Blinkova %A Yu. A. Blinkov %A S. V. Ivanov %A L. I. Mogilevich %T Nonlinear deformation waves in a geometrically and physically nonlinear viscoelastic cylindrical shell containing viscous incompressible fluid and surrounded by an elastic medium %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 193-202 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a9/ %G ru %F ISU_2015_15_2_a9
A. Yu. Blinkova; Yu. A. Blinkov; S. V. Ivanov; L. I. Mogilevich. Nonlinear deformation waves in a geometrically and physically nonlinear viscoelastic cylindrical shell containing viscous incompressible fluid and surrounded by an elastic medium. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 193-202. http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a9/
[1] Zemlyanukhin A. I., Mogilevich L. I., Nonlinear Waves in Cylindrical Shells : Solitons, Symmetry, Evolution, Saratov State Tech. Univ. Press, Saratov, 1999, 132 pp. (in Russian)
[2] Arshinov G. A., Zemlyanukhin A. I., Mogilevich L. I., “Two-dimensional Solitary Waves in Nonlinear Viscoelastic Deformable Environment”, Acoustical Physics, 46:1 (2000), 116–117 (in Russian)
[3] Arshinov G. A., Mogilevich L. I., Static and Dynamic Problems of Viscoelasticity, Saratov State RGM Univ. Press, Saratov, 2000, 152 pp. (in Russian)
[4] Loitsyansky L. G., Fluid Mechanics, Drofa, M., 2003, 840 pp. (in Russian) | DOI
[5] Volmir A. S., Dynamics of Plates and Shells, Nauka, M., 1972, 432 pp. (in Russian) | MR
[6] Moskvitin V. V., Resistance Vyzko-elastic materials, Nauka, M., 1972, 328 pp. (in Russian)
[7] Vlasov V. Z., Leont'ev N. N., Beams, Plates and Shells on Elastic Foundation, Fizmatgiz, M., 1960, 490 pp. (in Russian)
[8] Chivilikhin S. A., Popov I. Yu., Gusarov V. V., “Dynamics of nanotube twisting in a viscous fluid”, Doklady Physics, 52:1 (2007), 60–62 | DOI
[9] Popov I. Y., Rodygina O. A., Chivilikhin S. A., Gusarov V. V., “Soliton in a nanotube wall and stokes flow in the nanotube”, Technical Physics Letters, 36:9 (2010), 852–855 | DOI
[10] Blinkov Yu. A., Mozzhilkin V. V., “Generation of Difference Schemes for the Burgers Equation by Constructing Gröbner Bases”, Programming and Computer Software, 32:2 (2006), 114–117 | DOI | MR | Zbl
[11] Gerdt V. P., Blinkov Yu. A., Mozzhilkin V. V., “Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations”, Symmetry, Integrability and Geometry : Methods and Applications, 2 (2006), 26 pp. (data obrascheniya: 03.03.2015) http://www.emis.de/journals/SIGMA/2006/Paper051/index.html | DOI | MR
[12] Gerdt V. P., Blinkov Yu. A., “Gröbner Bases and Involution and difference schemes for the Navier–Stokes equations”, Computer Algebra in Scientific Computing, Lecture Notes in Computer Science, 5743, 2009, 94–105 | DOI | Zbl
[13] Gerdt V. P., Robertz D., “A Maple Package for Computing Gröbner Bases for Linear Recurrence Relations”, Nuclear Instruments and Methods in Physics Research, A559 (2006), 215–219 | DOI