Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_2_a6, author = {V. B. Tlyachev and A. D. Ushkho and D. S. Ushkho}, title = {An estimate from above of the number of invariant straight lines of $n$-th degree polynomial vector field}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {171--179}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a6/} }
TY - JOUR AU - V. B. Tlyachev AU - A. D. Ushkho AU - D. S. Ushkho TI - An estimate from above of the number of invariant straight lines of $n$-th degree polynomial vector field JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 171 EP - 179 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a6/ LA - ru ID - ISU_2015_15_2_a6 ER -
%0 Journal Article %A V. B. Tlyachev %A A. D. Ushkho %A D. S. Ushkho %T An estimate from above of the number of invariant straight lines of $n$-th degree polynomial vector field %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 171-179 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a6/ %G ru %F ISU_2015_15_2_a6
V. B. Tlyachev; A. D. Ushkho; D. S. Ushkho. An estimate from above of the number of invariant straight lines of $n$-th degree polynomial vector field. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 171-179. http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a6/
[1] Joan C. A., Grunbaum B., Llibre J., “On the number of invariant straight lines for polynomial differential systems”, Pacific J. Math., 184:2 (1998), 207–230 | DOI | MR | Zbl
[2] Druzhkova T. A., Algebraic and differential equations with algebraic integrals, v. 1, Nizhny Novgorod Univ. Press, Nizhny Novgorod, 2005, 37 pp. (in Russian)
[3] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Qualitative Theory of Second-Order Dynamic Systems, John Wiley, Jerusalem–New York, 1973, 524 pp. | MR | MR | Zbl
[4] Dolov M. V., Chistyakova S. A., “On linear partial integrals of polynomial vector fields of the fourth degree with degenerate infinity, I”, Bulletin of the University of Nizhny Novgorod, 2010, no. 6, 132–137 (in Russian)
[5] Dolov M. V., Chistyakova S. A., “On linear partial integrals of polynomial vector fields of the fourth degree with degenerate infinity, II”, Bulletin of the University of Nizhny Novgorod, 2011, no. 1, 139–148 (in Russian)
[6] Dolov M. V., Chistyakova S. A., “On linear partial integrals of polynomial vector fields of the fourth degree with degenerate infinity, III”, Bulletin of the University of Nizhny Novgorod, 2011, no. 2, 123–129 (in Russian)
[7] Ushkho A. D., “Trajectories of cubic differential systems on a the plane with invariant lines of six various directions”, Proceedings of Voronezh State University. Ser. Physics. Mathematics, 2012, no. 2, 224–231 (in Russian)
[8] Tlyachev V. B., Ushkho A. D., Ushkho D. S., “Symmetry axes of planar polynomial differential systems”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 10:2 (2010), 41–49 (in Russian) | MR
[9] Ushkho D. S., “On straight isoclinal lines of cubic differential system”, Works of the Adygheya Republic Physical Society, 2003, no. 8, 7–21 (in Russian)
[10] Kurosh A. G., Higher algebra, Translated from the Russian by George Yankovsky; reprint of the 1972 translation, Mir, M., 1988, 428 pp.
[11] Lyubimova R. A., “On a differential equation with integral straight”, Differential and integral equations, 1, Izd-vo gos. un-ta, Gor'kii, 1977, 19–22 (in Russian)
[12] Llibre J., Vulpe N., “Planar Cubic Polynomial Differential Systems with the Maximum Number of Invariant Straight Lines”, Rocky Mountain J. Math., 36:4 (2006), 1301–1373 | DOI | MR | Zbl
[13] Llibre J., Vulpe N., “Cubic systems with invariant affine straight lines of total parallel multiplicity seven”, Electronic Journal of Differential Equations, 274 (2013), 1–22 (accessed 22, October, 2014) http://ejde.math.txstate.edu/ | MR
[14] (Accessed 22, October, 2014)
[15] Bujac C., “One new class of cubic systems with maximum number of invariant lines omitted in the classification of J. Llibre and N. Vulpe”, Buletinul Academiei de Stiinte a Republicii Moldova (BASM). Matematica, 2014, no. 2(75), 102–105 | Zbl