An estimate from above of the number of invariant straight lines of $n$-th degree polynomial vector field
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 171-179

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the $n$-th degree polynomial vector field in the plane has at most $2n + 1$ ($2n + 2$) invariant straight lines when $n$ is even (odd) and $n\geq 3$ if it has a singular point for which $n + 1$ invariant straight lines and $n$ parallel invariant straight lines with a certain angular coefficient are incident.
@article{ISU_2015_15_2_a6,
     author = {V. B. Tlyachev and A. D. Ushkho and D. S. Ushkho},
     title = {An estimate from above of the number of invariant straight lines of $n$-th degree polynomial vector field},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {171--179},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a6/}
}
TY  - JOUR
AU  - V. B. Tlyachev
AU  - A. D. Ushkho
AU  - D. S. Ushkho
TI  - An estimate from above of the number of invariant straight lines of $n$-th degree polynomial vector field
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 171
EP  - 179
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a6/
LA  - ru
ID  - ISU_2015_15_2_a6
ER  - 
%0 Journal Article
%A V. B. Tlyachev
%A A. D. Ushkho
%A D. S. Ushkho
%T An estimate from above of the number of invariant straight lines of $n$-th degree polynomial vector field
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 171-179
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a6/
%G ru
%F ISU_2015_15_2_a6
V. B. Tlyachev; A. D. Ushkho; D. S. Ushkho. An estimate from above of the number of invariant straight lines of $n$-th degree polynomial vector field. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 171-179. http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a6/