Asymptotic ratio of harmonic measures of slit sides
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 160-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the geometry of solutions to the chordal Löwner equation which is based on the comparison of singular solutions and harmonic measures for the sides of a slit in the upper half-plane generated by a driving term. An asymptotic ratio for harmonic measures of slit sides is found for a slit which is tangential to a straight line under a given angle, and for a slit with high order tangency to a circular arc tangential to the real axis.
@article{ISU_2015_15_2_a4,
     author = {D. V. Prokhorov and D. V. Ukrainskii},
     title = {Asymptotic ratio of harmonic measures of slit sides},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {160--167},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a4/}
}
TY  - JOUR
AU  - D. V. Prokhorov
AU  - D. V. Ukrainskii
TI  - Asymptotic ratio of harmonic measures of slit sides
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 160
EP  - 167
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a4/
LA  - en
ID  - ISU_2015_15_2_a4
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%A D. V. Ukrainskii
%T Asymptotic ratio of harmonic measures of slit sides
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 160-167
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a4/
%G en
%F ISU_2015_15_2_a4
D. V. Prokhorov; D. V. Ukrainskii. Asymptotic ratio of harmonic measures of slit sides. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 160-167. http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a4/

[1] Löwner K., “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I”, Math. Ann., 89:1–2 (1923), 103–121 | DOI | MR | Zbl

[2] Lind J., Marshall D. E., Rohde S., “Collisions and spirals of Loewner traces”, Duke Math. J., 154:3 (2010), 527–573 | DOI | MR | Zbl

[3] Hayman W. K., Kennedy P. B., Subharmonic Functions, v. 1, Academic Press, London–New York, 1976 | MR | Zbl

[4] Earle C. J., Epstein A. L., “Quasiconformal variation of slit domains”, Proc. Amer. Math. Soc., 129:11 (2001), 3363–3372 | DOI | MR | Zbl

[5] Prokhorov D., Zakharov A., “Harmonic measures of sides of a slit perpendicular to the domain boundary”, J. Math. Anal. Appl., 394:2 (2012), 738–743 | DOI | MR | Zbl

[6] Kager W., Nienhuis B., Kadanoff L. P., “Exact solutions for Loewner evolutions”, J. Statist. Phys., 115:3–4 (2004), 805–822 | DOI | MR | Zbl

[7] Radó T., “Sur la représentations conforme de domaines variables”, Acta Sci. Math. (Szeged), 1:3 (1922–1923), 180–186

[8] Goluzin G. M., Geometric Theory of Functions of Complex Variables, Nauka, M., 1966 | MR

[9] Markushevich A. I., “Sur la représentations conforme des domaines à frontières variables”, Rec. Math. N.S., 1(43):6 (1936), 863–886

[10] Prokhorov D., Vasil'ev A., “Singular and tangent slit solutions to the Löwner equation”, Analysis and Mathematical Physics, eds. D. Gustafsson, A. Vasil'ev, Birkhauser, Berlin, 2009, 455–463 | DOI | MR | Zbl

[11] Ivanov G., Prokhorov D., Vasil'ev A., “Non-slit and singular solutions to the Löwner equation”, Bull. Sci. Mathem., 136:3 (2012), 328–341 | DOI | MR | Zbl