Asymptotic ratio of harmonic measures of slit sides
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 160-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the geometry of solutions to the chordal Löwner equation which is based on the comparison of singular solutions and harmonic measures for the sides of a slit in the upper half-plane generated by a driving term. An asymptotic ratio for harmonic measures of slit sides is found for a slit which is tangential to a straight line under a given angle, and for a slit with high order tangency to a circular arc tangential to the real axis.
@article{ISU_2015_15_2_a4,
     author = {D. V. Prokhorov and D. V. Ukrainskii},
     title = {Asymptotic ratio of harmonic measures of slit sides},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {160--167},
     year = {2015},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a4/}
}
TY  - JOUR
AU  - D. V. Prokhorov
AU  - D. V. Ukrainskii
TI  - Asymptotic ratio of harmonic measures of slit sides
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 160
EP  - 167
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a4/
LA  - en
ID  - ISU_2015_15_2_a4
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%A D. V. Ukrainskii
%T Asymptotic ratio of harmonic measures of slit sides
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 160-167
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a4/
%G en
%F ISU_2015_15_2_a4
D. V. Prokhorov; D. V. Ukrainskii. Asymptotic ratio of harmonic measures of slit sides. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 160-167. http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a4/

[1] Löwner K., “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I”, Math. Ann., 89:1–2 (1923), 103–121 | DOI | MR | Zbl

[2] Lind J., Marshall D. E., Rohde S., “Collisions and spirals of Loewner traces”, Duke Math. J., 154:3 (2010), 527–573 | DOI | MR | Zbl

[3] Hayman W. K., Kennedy P. B., Subharmonic Functions, v. 1, Academic Press, London–New York, 1976 | MR | Zbl

[4] Earle C. J., Epstein A. L., “Quasiconformal variation of slit domains”, Proc. Amer. Math. Soc., 129:11 (2001), 3363–3372 | DOI | MR | Zbl

[5] Prokhorov D., Zakharov A., “Harmonic measures of sides of a slit perpendicular to the domain boundary”, J. Math. Anal. Appl., 394:2 (2012), 738–743 | DOI | MR | Zbl

[6] Kager W., Nienhuis B., Kadanoff L. P., “Exact solutions for Loewner evolutions”, J. Statist. Phys., 115:3–4 (2004), 805–822 | DOI | MR | Zbl

[7] Radó T., “Sur la représentations conforme de domaines variables”, Acta Sci. Math. (Szeged), 1:3 (1922–1923), 180–186

[8] Goluzin G. M., Geometric Theory of Functions of Complex Variables, Nauka, M., 1966 | MR

[9] Markushevich A. I., “Sur la représentations conforme des domaines à frontières variables”, Rec. Math. N.S., 1(43):6 (1936), 863–886

[10] Prokhorov D., Vasil'ev A., “Singular and tangent slit solutions to the Löwner equation”, Analysis and Mathematical Physics, eds. D. Gustafsson, A. Vasil'ev, Birkhauser, Berlin, 2009, 455–463 | DOI | MR | Zbl

[11] Ivanov G., Prokhorov D., Vasil'ev A., “Non-slit and singular solutions to the Löwner equation”, Bull. Sci. Mathem., 136:3 (2012), 328–341 | DOI | MR | Zbl