Isoperimetry coefficient for simplex in the problem of approximation of~derivatives
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 151-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the isoperimetry coefficient $\sigma(G)= {|\partial G|^{n/(n-1)}}/{|G|} $ of region $G\subset \mathbb R^n$. In terms of this the error $\delta_\Delta(f)$ estimates for the gradient of the piecewise linear interpolation of functions of class $C^1(G)$, $C^2(G)$, $C^{1,\alpha}(G)$, $0\alpha1$, are obtained. The problem of obtaining such estimates is nontrivial, especially in the multidimensional case. Here it should be noted that in the two-dimensional case, for functions of class $C^2(G)$, the convergence of the derivatives is provided by the classical Delaunay condition. In the multidimensional case, as shown by the examples, such conditions are not sufficient. Nevertheless, the article shows how to apply these estimates to the Delaunay triangulation of multidimensional discrete $ \varepsilon $-nets. The results obtained give sufficient conditions for convergence of the derivatives on the Delaunay triangulation of discrete $ \varepsilon $-nets with $ \varepsilon \to 0 $. In addition, the ratio of the distortion factor is found for isoperimetry coefficient under the quasi-isometric transformation.
@article{ISU_2015_15_2_a3,
     author = {V. A. Klyachin and D. V. Shurkaeva},
     title = {Isoperimetry coefficient for simplex in the problem of approximation of~derivatives},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {151--160},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a3/}
}
TY  - JOUR
AU  - V. A. Klyachin
AU  - D. V. Shurkaeva
TI  - Isoperimetry coefficient for simplex in the problem of approximation of~derivatives
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 151
EP  - 160
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a3/
LA  - ru
ID  - ISU_2015_15_2_a3
ER  - 
%0 Journal Article
%A V. A. Klyachin
%A D. V. Shurkaeva
%T Isoperimetry coefficient for simplex in the problem of approximation of~derivatives
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 151-160
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a3/
%G ru
%F ISU_2015_15_2_a3
V. A. Klyachin; D. V. Shurkaeva. Isoperimetry coefficient for simplex in the problem of approximation of~derivatives. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 151-160. http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a3/

[1] Borovikov S. N., Ivanov I. E., Kryukov I. A., “Modeling of test ideal gas dynamics problems using tetrahedral meshes”, Matem. Mod., 18:8 (2006), 37–48 (in Russian) | Zbl

[2] Borovikov S. N., Kryukov I. A., Ivanov I. E., “Unstructured triangular mesh generation on curved faces based on Delauney triangulation”, Matem. Mod., 17:8 (2005), 31–45 (in Russian) | MR | Zbl

[3] Shewchuk J. R., What is a Good Linear Element? Interpolation, Conditioning and Quality Measures, Preprint CA 94720, Department of Electrical Engineering and Computer Sciences University of California at Berkeley, Berkeley, 2002

[4] Gelbaum B. R., Olmsted J. M. H., Counterexamples in analysis, Holden-Day, San Francisco–London–Amsterdam, 1964 | MR | Zbl

[5] Klyachin V. A., Shirokii A. A., “The Delaunay triangulation for multidimensional surfaces and its approximative properties”, Russian Math., 56:1 (2012), 27–34 | DOI | MR | Zbl

[6] Klyachin V. A., Pabat E. A., “$C^1$-approximation of the level surfaces of functions defined on irregular grids”, Sib. Zh. Ind. Mat., 13:2 (2010), 69–78 (in Russian) | MR | Zbl

[7] Skvortsov A. V., Mirza N. S., Constructing and Analisys of Triangulation Algorithms, Tomsk Univ. Press, Tomsk, 2006 (in Russian)

[8] Klyachin V. A., “On a multidimensional analogue of the Schwarz example”, Izv. Math., 76:4 (2012), 681–687 | DOI | DOI | MR | Zbl

[9] Ushakova O. V., “Nondegeneracy conditions for three-dimensional cells and a formula for the cell's volume”, Comput. Math. Math. Phys., 41:6 (2001), 832–845 | MR | Zbl

[10] Berger M., Geometry, Translated from the French by M. Cole and S. Levy, Universitext, Springer-Verlag, Berlin, 1987, xiv+428 pp. | DOI | MR | MR