Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_2_a3, author = {V. A. Klyachin and D. V. Shurkaeva}, title = {Isoperimetry coefficient for simplex in the problem of approximation of~derivatives}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {151--160}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a3/} }
TY - JOUR AU - V. A. Klyachin AU - D. V. Shurkaeva TI - Isoperimetry coefficient for simplex in the problem of approximation of~derivatives JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 151 EP - 160 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a3/ LA - ru ID - ISU_2015_15_2_a3 ER -
%0 Journal Article %A V. A. Klyachin %A D. V. Shurkaeva %T Isoperimetry coefficient for simplex in the problem of approximation of~derivatives %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 151-160 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a3/ %G ru %F ISU_2015_15_2_a3
V. A. Klyachin; D. V. Shurkaeva. Isoperimetry coefficient for simplex in the problem of approximation of~derivatives. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 151-160. http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a3/
[1] Borovikov S. N., Ivanov I. E., Kryukov I. A., “Modeling of test ideal gas dynamics problems using tetrahedral meshes”, Matem. Mod., 18:8 (2006), 37–48 (in Russian) | Zbl
[2] Borovikov S. N., Kryukov I. A., Ivanov I. E., “Unstructured triangular mesh generation on curved faces based on Delauney triangulation”, Matem. Mod., 17:8 (2005), 31–45 (in Russian) | MR | Zbl
[3] Shewchuk J. R., What is a Good Linear Element? Interpolation, Conditioning and Quality Measures, Preprint CA 94720, Department of Electrical Engineering and Computer Sciences University of California at Berkeley, Berkeley, 2002
[4] Gelbaum B. R., Olmsted J. M. H., Counterexamples in analysis, Holden-Day, San Francisco–London–Amsterdam, 1964 | MR | Zbl
[5] Klyachin V. A., Shirokii A. A., “The Delaunay triangulation for multidimensional surfaces and its approximative properties”, Russian Math., 56:1 (2012), 27–34 | DOI | MR | Zbl
[6] Klyachin V. A., Pabat E. A., “$C^1$-approximation of the level surfaces of functions defined on irregular grids”, Sib. Zh. Ind. Mat., 13:2 (2010), 69–78 (in Russian) | MR | Zbl
[7] Skvortsov A. V., Mirza N. S., Constructing and Analisys of Triangulation Algorithms, Tomsk Univ. Press, Tomsk, 2006 (in Russian)
[8] Klyachin V. A., “On a multidimensional analogue of the Schwarz example”, Izv. Math., 76:4 (2012), 681–687 | DOI | DOI | MR | Zbl
[9] Ushakova O. V., “Nondegeneracy conditions for three-dimensional cells and a formula for the cell's volume”, Comput. Math. Math. Phys., 41:6 (2001), 832–845 | MR | Zbl
[10] Berger M., Geometry, Translated from the French by M. Cole and S. Levy, Universitext, Springer-Verlag, Berlin, 1987, xiv+428 pp. | DOI | MR | MR