Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_2_a12, author = {D. A. Prikazchikov}, title = {Near-resonant regimes of a steady-state moving load on a transversely isotropic elastic half-plane}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {215--221}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a12/} }
TY - JOUR AU - D. A. Prikazchikov TI - Near-resonant regimes of a steady-state moving load on a transversely isotropic elastic half-plane JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 215 EP - 221 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a12/ LA - en ID - ISU_2015_15_2_a12 ER -
%0 Journal Article %A D. A. Prikazchikov %T Near-resonant regimes of a steady-state moving load on a transversely isotropic elastic half-plane %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 215-221 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a12/ %G en %F ISU_2015_15_2_a12
D. A. Prikazchikov. Near-resonant regimes of a steady-state moving load on a transversely isotropic elastic half-plane. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 215-221. http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a12/
[1] Shamalta M., Metrikine A. V., “Analytical study of the dynamic response of an embedded railway track to a moving load”, Arch. Appl. Mech., 73 (2003), 131–146 | DOI | Zbl
[2] Cao Y., Xia H., Li Z., “A semi-analytical/FEM model for predicting ground vibrations induced by high-speed train through continuous girder bridge”, J. Mech. Sci. Technol., 26 (2012), 2485–2496 | DOI
[3] Cole J., Huth J., “Stresses produced in a half plane by moving loads”, J. Appl. Mech., 25 (1958), 433–436 | MR | Zbl
[4] Madshus C., Kaynia A. M., “High-speed railway lines on soft ground : dynamic behaviour at critical train speed”, J. Sound Vib., 231:3 (2000), 689–701 | DOI
[5] Mukherjee S., “Stresses produced by a load moving over the rough boundary of a semi-infinite transversely isotropic solid”, Pure Appl. Geophys., 72 (1969), 45–50 | DOI
[6] De Hoop A. T., “The moving-load problem in soil dynamics — the vertical displacement approximation”, Wave Motion, 36 (2002), 335–346 | DOI | MR | Zbl
[7] Kaplunov J., Nolde E., Prikazchikov D. A., “A revisit to the moving load problem using an asymptotic model for the Rayleigh wave”, Wave Motion, 47 (2010), 440–451 | DOI | MR | Zbl
[8] Kaplunov J., Prikazchikov D. A., “Explicit models for surface, interfacial and edge waves in elastic solids”, Dynamic localization phenomena in elasticity, acoustics and electromagnetism, CISM Lecture Notes, 547, eds. R. Craster, J. Kaplunov, Springer-Verlag, 2013, 73–114 | MR
[9] Kaplunov Yu. D., Kossovich L. Yu., “Asymptotic model of Rayleigh waves in the far-field zone in an elastic half-plane”, Doklady Physics, 49:4 (2004), 234–236 | DOI | MR
[10] Kaplunov J., Zakharov A., Prikazchikov D. A., “Explicit models for elastic and piezoelastic surface waves”, IMA J. Appl. Math., 71 (2006), 768–782 | DOI | MR | Zbl
[11] Chadwick P., “Surface and interfacial waves of arbitrary form in isotropic elastic media”, J. Elast., 6 (1976), 73–80 | DOI | MR | Zbl
[12] Kaplunov J., Prikazchikov D. A., Erbas B., Sahin O., “On a 3D moving load problem in an elastic half space”, Wave Motion, 50 (2013), 1229–1238 | DOI | MR
[13] Erbas B., Kaplunov J., Prikazchikov D. A., Sahin O., “The near-resonant regimes of a moving load in a three-dimensional problem for a coated elastic half-space”, Math. Mech. Solids, 2014 | DOI
[14] Mukhomodiarov R. R., Prikazchikov D. A., “Asymptotic model for the Rayleigh wave in case of a transversely isotropic half-plane”, XVIII Session of International School on the Models of Continuum Mechanics, Proc. Int. Conf., Saratov Univ. Press, Saratov, 2007, 210–213 (in Russian)
[15] Prikazchikov D. A., “Rayleigh waves of arbitrary profile in anisotropic media”, Mech. Res. Comm., 50 (2013), 83–86 | DOI | MR
[16] Buchwald V. T., “Rayleigh waves in transversely isotropic media”, Quart. J. Mech. Appl. Math., 14 (1961), 293–318 | DOI | MR
[17] Ting T. C. T., Anisotropic elasticity, Oxford Univ. Press, Oxford, 1996, 570 pp. | MR | Zbl
[18] Royer D., Dieulesaint E., Elastic Waves in Solids, v. II, Springer, Berlin, 2000, 446 pp. | MR
[19] Kiselev A. P., Parker D. F., “Omni-directional Rayleigh, Stoneley and Scholte waves with general time dependence”, Proc. Roy. Soc. London A, 466 (2010), 2241–2258 | DOI | MR | Zbl
[20] Kaplunov J. D., Transient dynamics of an elastic half-plane subject to a moving load, Preprint No 277, Institute for Problems in Mechanics, USSR Academy of Sciences, 1986, 53 pp. (in Russian)
[21] Courant R., Hilbert D., Methods of Mathematical Physics, v. 2, Wiley, New York, 1966, 811 pp. | MR
[22] Erbas B., Kaplunov J., Prikazchikov D. A., “The Rayleigh wave field in mixed problems for a half-plane”, IMA J. Appl. Math., 78 (2013), 1078–1086 | DOI | MR | Zbl